We demonstrate a direct measurement of thickness gradients in vertical soap films with a resonant differential interferometer, i.e., the Jamin-Fabry-Perot interferometer. Two regimes are investigated: thick colored films with gravity- and capillarity-induced gradients, and silvery-gray to common black films which are quasi-independent of gravity. In the colored zone, our differential method is an ideal tool with which to isolate the large thickness instabilities of the film reaching 17nmmm that characterize the end of its drainage. Using the so-called F2 law of such an interferometer, thermal-induced thickness variations as small as 1nm are isolated in the gradient-free common black film.

1.
I.
Newton
,
Optiks Book II
(
Smith and Watford
,
London
,
1704
), pt. 1.
2.
J. W.
Gibbs
,
Collected Works
(
Longmans, Green
,
New York
,
1928
), Vol.
1
, p.
300
.
3.
K. J.
Mysels
,
K.
Shinoda
, and
S.
Frankel
,
Soap Films; Studies of their Thinning
(
Pergamon
,
New York
,
1959
).
4.
P. G.
De Gennes
,
Langmuir
17
,
2416
(
2001
).
5.
E.
Ruckenstein
and
M.
Manciu
,
Langmuir
18
,
2727
(
2002
).
6.
V.
Casteletto
,
I.
Cantat
,
D.
Sarker
,
R.
Bausch
,
D.
Bonn
, and
J.
Meunier
,
Phys. Rev. Lett.
90
,
048302
(
2003
).
7.
F.
Bresme
and
J.
Faraudo
,
Langmuir
20
,
5127
(
2004
).
8.
Y.
Amourachene
and
H.
Kellay
,
Phys. Rev. Lett.
93
,
214504
(
2004
).
9.
J. J.
Benattar
,
Q.
Shen
,
S.
Bratskaya
,
V.
Petkova
,
M. P.
Krafft
, and
B.
Pucci
,
Langmuir
20
,
1047
(
2004
).
10.
V.
Greco
and
G.
Molesini
,
Meas. Sci. Technol.
7
,
96
(
1996
).
11.
O.
Greffier
,
Y.
Amarouchene
, and
H.
Kellay
,
Phys. Rev. Lett.
88
,
194101
(
2002
).
12.
C.
Berger
,
V.
Bergeron
,
B.
Desbat
,
D.
Blaudez
,
H.
Kellay
, and
J.-M.
Turlet
,
Langmuir
19
,
8615
(
2003
).
13.
S.
Berg
,
E. A.
Adelizzi
, and
S. M.
Troian
,
Langmuir
21
,
3867
(
2005
).
14.
X. L.
Wu
,
R.
Levine
,
M.
Rutgers
,
H.
Kellay
, and
W. I.
Goldburg
,
Rev. Sci. Instrum.
72
,
2467
(
2001
).
15.
D.
Chauvat
,
C.
Bonnet
,
A.
Durand
,
M.
Vallet
, and
A.
Le Floch
,
Opt. Lett.
28
,
126
(
2003
).
16.

Actually, due to small constructive interferences in the film, the effective thickness is equal to eieff=K(n1)ei, with K=(3n2+1)(n+1)21.16 for a film of water.

You do not currently have access to this content.