We demonstrate CuInS2 thin film solar cell device efficiencies larger than 10% by preparing the absorber layers by reactive magnetron sputtering from metallic targets in an argon-hydrogen sulfide atmosphere. At deposition temperatures below 500°C the polycrystalline films show a compact morphology with grain sizes of several micrometers. Solar cell devices show optical and electrical properties that are comparable to coevaporated or sequentially processed cells, in particular, diffusion lengths larger than 2μm and fill factors larger than 70%. We conclude that ion bombardment during the sputtering process does not lead to a significant increase of electronically active defects in these devices.

1.
E.
Vanhoecke
and
M.
Burgelman
,
Thin Solid Films
112
,
97
(
1984
).
2.
J. A.
Thornton
and
T. C.
Lommasson
,
Sol. Cells
16
,
165
(
1986
).
3.
A. N. Y.
Samaan
,
S. M.
Wasim
,
A. E.
Hill
,
D. G.
Armour
, and
R. D.
Tomlinson
,
Phys. Status Solidi A
96
,
317
(
1986
).
4.
T.
Yamaguchi
,
J.
Matsufusa
, and
A.
Yoshida
,
J. Appl. Phys.
72
,
5657
(
1992
).
5.
Y. B.
He
,
W.
Kriegseis
,
B. K.
Meyer
,
A.
Polity
, and
M.
Serafin
,
Appl. Phys. Lett.
83
,
1743
(
2003
).
6.
A.
Gupta
and
A. D.
Compaan
,
Appl. Phys. Lett.
85
,
684
(
2004
).
7.
J.
Klaer
,
J.
Bruns
,
R.
Henninger
,
K.
Siemer
,
R.
Klenk
,
K.
Ellmer
, and
D.
Bräunig
,
Semicond. Sci. Technol.
13
,
1456
(
1998
).
8.
U.
Rau
and
H.-W.
Schock
,
Appl. Phys. A: Mater. Sci. Process.
69
,
131
(
1999
).
9.
A.
Jasenek
and
U.
Rau
,
J. Appl. Phys.
90
,
650
(
2001
).
10.
K.
Ellmer
,
J.
Hinze
, and
J.
Klaer
,
Thin Solid Films
413
,
92
(
2002
).
11.
D. S.
Su
,
W.
Neumann
,
R.
Hunger
,
P.
Schubert-Bischoff
,
M.
Giersig
,
H. J.
Lewerenz
,
R.
Scheer
, and
E.
Zeitler
,
Appl. Phys. Lett.
73
,
785
(
1998
).
12.
J.
Alvarez-Garcia
,
A.
Perez-Rodriguez
,
B.
Barcones
,
A.
Romano-Rodriguez
,
J. R.
Morante
,
A.
Janotti
,
S.-H.
Wei
, and
R.
Scheer
,
Appl. Phys. Lett.
80
,
562
(
2002
).
13.
R.
Scheer
and
H. J.
Lewerenz
,
J. Vac. Sci. Technol. A
12
,
51
(
1994
).
14.
R.
Kaigawa
,
A.
Neisser
,
R.
Klenk
, and
M. C.
Lux-Steiner
,
Thin Solid Films
415
,
266
(
2002
).
15.
T.
Unold
,
T.
Enzenhofer
,
I.
Sieber
, and
K.
Ellmer
(unpublished).
16.
R.
Klenk
,
J.
Klaer
,
R.
Scheer
,
M. C.
Lux-Steiner
,
I.
Luck
,
N.
Meyer
, and
U.
Rühle
,
Thin Solid Films
480
,
509
(
2005
).
17.
I.
Hengel
,
A.
Neisser
,
R.
Klenk
, and
M. C.
Lux-Steiner
,
Thin Solid Films
361
,
458
(
2000
).
18.
R.
Scheer
,
R.
Klenk
,
J.
Klaer
, and
I.
Luck
,
Sol. Energy Mater. Sol. Cells
77
,
777
(
2004
).
19.
M.
Burgelman
,
P.
Nollet
, and
S.
Degrave
,
Thin Solid Films
361
,
527
(
2000
).
20.

Assuming typical capture cross sections of 1015cm2 and carrier mobilities <100cm2Vs.

21.
S. B.
Zhang
,
S.-H.
Wei
,
A.
Zunger
, and
H.
Katayama-Yoshida
,
Phys. Rev. B
57
,
9642
(
1998
).
22.
A.
Jasenek
,
H.-W.
Schock
,
J. H.
Werner
, and
U.
Rau
,
Appl. Phys. Lett.
79
,
2922
(
2001
).
23.
R.
Herberholz
,
V.
Nadenau
,
U.
Ruehle
,
C.
Koeble
,
H. W.
Schock
, and
B.
Dimmler
,
Sol. Energy Mater. Sol. Cells
49
,
227
(
1997
).
You do not currently have access to this content.