The electron transport in single-walled boron nanotube (BNT) is studied using the Landauer-Büttiker [R. Landauer, J. Phys.: Condens: Matter1, 8099 (1989); M. Büttiker, Phys. Rev. Lett.57, 1761 (1986)] multichannel approach in conjunction with the tight-binding method. In the range of the calculated length (15.0nm) of the tubes, the calculations predict a ballistic transport in BNT and find a relatively low resistance for BNTs as compared to that of the single-walled carbon nanotubes (CNTs) of comparable length. A lower resistance in the case of BNT than the CNT may be attributed to electron-deficient nature of boron characterized by the presence of two-center, and multicenter bonds in the former.

1.
R.
Saito
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Physical Properties of Carbon Nanotubes
(
Imperial College Press
,
London
,
2003
).
2.
Y.
Xu
,
H.
Peng
,
R. H.
Hauge
, and
R. E.
Smalley
,
Nano Lett.
5
,
163
(
2005
).
3.
E. L.
Muetterties
,
The Chemistry of Boron and its Compounds
(
Wiley
,
New York
,
1967
).
4.
T. T.
Xu
,
J.
Zheng
,
N.
Wu
,
A. W.
Nicholls
,
J. R.
Roth
,
D. A.
Dikin
, and
R. S.
Ruoff
,
Nano Lett.
4
,
963
(
2004
).
5.
D.
Wang
,
J. G.
Lu
,
C. J.
Otten
, and
W. E.
Buhro
,
Appl. Phys. Lett.
83
,
5280
(
2003
).
6.
D.
Ciuparu
,
R. F.
Klie
,
Y.
Zhu
, and
L.
Pfefferle
,
J. Phys. Chem. B
108
,
3967
(
2004
).
7.
R.
Landauer
,
J. Phys.: Condens. Matter
1
,
8099
(
1989
).
8.
9.
S.
Datta
,
Electronic Transport Properties in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge
,
1995
).
10.
A.
Gindulyte
,
W. N.
Lipscomb
, and
L.
Massa
,
Inorg. Chem.
37
,
6544
(
1998
).
11.
I.
Boustani
,
A.
Quandt
,
E.
Hernăndez
, and
A.
Rubio
,
J. Chem. Phys.
110
,
3176
(
1999
).
12.
M. H.
Evans
,
J. D.
Joannopoulos
, and
S. T.
Pantelides
,
Phys. Rev. B
72
,
045434
(
2005
).
13.
K. C.
Lau
,
R.
Pati
,
R.
Pandey
, and
A. C.
Pineda
,
Chem. Phys. Lett.
41
,
549
(
2006
).
14.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
New Delhi, India
,
1993
).
15.

DFT calculations find the equilibrium distances for Au–B and Au–C dimers to be 1.98 and 1.93Å.

16.
R.
Pati
,
Y.
Zhang
,
S. K.
Nayak
, and
P. M.
Ajayan
,
Appl. Phys. Lett.
81
,
2638
(
2002
).
17.
S. J.
Tans
,
M. H.
Devoret
,
H.
Dai
,
A.
Thess
,
R. E.
Smalley
,
L. J.
Geerligs
, and
C.
Dekker
,
Nature (London)
386
,
474
(
1997
).
18.
A.
Bachtold
,
M. S.
Fuhrer
,
S.
Plyasunov
,
M.
Forero
,
E. H.
Anderson
,
A.
Zettl
, and
P. L.
McEuen
,
Phys. Rev. Lett.
84
,
6082
(
2000
).
19.
V.
Krstić
,
S.
Roth
, and
M.
Burghard
,
Phys. Rev. B
62
,
R16353
(
2000
).
20.
W.
Liang
,
M.
Bockrath
,
D.
Bozovic
,
J.
Hafner
,
M.
Tinkham
, and
H.
Park
,
Nature (London)
411
,
665
(
2001
).
21.
J.
Kong
,
E.
Yenilmez
,
T. W.
Tombler
,
W.
Kim
,
H.
Dai
,
R. B.
Laughlin
,
L.
Liu
,
C. S.
Jayanthi
, and
S. Y.
Wu
,
Phys. Rev. Lett.
87
,
106801
(
2001
).
22.
C. T.
White
and
T. N.
Todorov
,
Nature (London)
393
,
240
(
1998
).
23.
M. P.
Anantram
and
T. R.
Govindan
,
Phys. Rev. B
58
,
4882
(
1998
).
24.
J.
Taylor
,
H.
Guo
, and
J.
Wang
,
Phys. Rev. B
63
,
121104
(
2001
).
You do not currently have access to this content.