High charge carrier densities have been realized in organic field-effect transistors based on single crystals of the organic semiconductors rubrene and tetracene using a high capacitance polymer electrolyte gate dielectric. The source-drain current was modulated by five orders of magnitude in a rubrene single-crystal organic field-effect transistor (SC-OFET) with gate voltages ranging from 0to3V. A peak in the field-effect conductance was also observed in SC-OFETs at induced carrier densities of 1015chargescm2. Key to successful device fabrication was the introduction of a thin, insulating spacer layer between the organic single crystal (OSC) and the polymer electrolyte gate dielectric. Further improvement of the device fabrication procedure may eliminate suspected solvent-related degradation effects and raise mobility values in these SC-OFETs, opening the door to a wide spectrum of experiments on OSCs at high charge carrier densities.

1.
G.
Malliaras
and
R.
Friend
,
Phys. Today
58
,
53
(
2005
).
2.
R. W. I.
de Boer
,
M. E.
Gershenson
,
A. F.
Morpurgo
, and
V.
Podzorov
,
Phys. Status Solidi A
6
,
1302
(
2004
).
3.
V. C.
Sundar
,
J.
Zaumseil
,
V.
Podzorov
,
E.
Menard
,
R. L.
Willett
,
T.
Someya
,
M. E.
Gershenson
, and
J. A.
Rogers
,
Science
303
,
1644
(
2004
).
4.
V.
Podzorov
,
E.
Menard
,
J. A.
Rogers
, and
M. E.
Gershenson
,
Phys. Rev. Lett.
95
,
226601
(
2005
).
5.
C. R.
Newman
,
R. J.
Chesterfield
,
J. A.
Merlo
, and
C. D.
Frisbie
,
Appl. Phys. Lett.
85
,
422
(
2004
).
6.
C.
Goldmann
,
S.
Haas
,
C.
Krellner
,
K. P.
Pernstich
,
D. J.
Gundlach
, and
B.
Batlogg
,
J. Appl. Phys.
96
,
2080
(
2004
).
7.
W. A.
Schoonveld
,
J.
Vrijmoeth
, and
T. M.
Klapwijk
,
Appl. Phys. Lett.
73
,
3884
(
1998
).
8.
M.
Mas-Torrent
,
P.
Hadley
,
S. T.
Bromley
,
N.
Crivillers
,
J.
Veciana
, and
C.
Rovira
,
Appl. Phys. Lett.
86
,
012110
(
2005
).
9.
J.
Takeya
,
T.
Nishikawa
,
T.
Takenobu
,
S.
Kobayashi
,
Y.
Iwasa
,
T.
Mitani
,
C.
Goldmann
,
C.
Krellner
, and
B.
Batlogg
,
Appl. Phys. Lett.
85
,
5078
(
2004
).
10.
V.
Podzorov
,
V. M.
Pudalov
, and
M. E.
Gershenson
,
Appl. Phys. Lett.
82
,
1739
(
2003
).
11.
Z.
Rang
,
M. I.
Nathan
,
P.
Paul Ruden
,
V.
Podzorov
,
M. E.
Gershenson
,
C. R.
Newman
, and
C. D.
Frisbie
,
Appl. Phys. Lett.
86
,
123501
(
2005
).
12.
A. F.
Stassen
,
R. W. I.
de Boer
,
N. N.
Iosad
, and
A. F.
Morpurgo
,
Appl. Phys. Lett.
85
,
3899
(
2004
).
13.
R. W. I.
de Boer
,
N. N.
Iosad
,
A. F.
Stassen
,
T. M.
Klapwijk
, and
A. F.
Morpurgo
,
Appl. Phys. Lett.
86
,
032103
(
2005
).
14.
E.
Menard
,
V.
Podzorov
,
S. H.
Hur
,
A.
Gaur
,
M. E.
Gershenson
, and
J. A.
Rogers
,
Adv. Mater. (Weinheim, Ger.)
16
,
2097
(
2004
).
15.
M. J.
Panzer
and
C. D.
Frisbie
,
J. Am. Chem. Soc.
127
,
6960
(
2005
).
16.
M. J.
Panzer
,
C. R.
Newman
, and
C. D.
Frisbie
,
Appl. Phys. Lett.
86
,
103503
(
2005
).
17.
S.
Chao
and
M. S.
Wrighton
,
J. Am. Chem. Soc.
109
,
2127
(
1987
).
18.
D.
Ofer
,
R. M.
Crooks
, and
M. S.
Wrighton
,
J. Am. Chem. Soc.
112
,
7869
(
1990
).
19.
D.
Ofer
and
M. S.
Wrighton
,
J. Am. Chem. Soc.
110
,
4467
(
1988
).
20.
T.
Ozel
,
A.
Gaur
,
J. A.
Rogers
, and
M.
Shim
,
Nano Lett.
5
,
905
(
2005
).
21.
F. M.
Gray
,
Solid Polymer Electrolytes: Fundamentals and Technological Applications
(
VCH
,
New York
,
1991
).
22.
P. V.
Pesavento
,
R. J.
Chesterfield
,
C. R.
Newman
, and
C. D.
Frisbie
,
J. Appl. Phys.
96
,
7312
(
2004
).
You do not currently have access to this content.