We investigate the electronic properties of the (110) cross-sectional surface of Si-doped GaAs using first-principles techniques. We focus on doping configurations with an equal concentration of Si impurities in cationic and anionic sites, such as occurring in a self-compensating doping regime. In particular we study a bilayer of Si atoms uniformly distributed over two consecutive (001) atomic layers. The simulated cross-sectional scanning tunneling microscopy images show a bright signal at negative bias, which is strongly attenuated when the bias is reversed. This scenario is consistent with experimental results which had been attributed to hitherto unidentified Si complexes.

1.
S.
Modesti
,
R.
Duca
,
P.
Finetti
,
G.
Ceballos
,
M.
Piccin
,
S.
Rubini
, and
A.
Franciosi
,
Phys. Rev. Lett.
92
,
086104
(
2004
).
2.
Ph.
Ebert
,
Surf. Sci. Rep.
33
,
121
(
1999
), and references therein.
3.
R. M.
Feenstra
,
Phys. Rev. B
50
,
4561
(
1994
).
4.
J.
Wang
,
T. A.
Arias
,
J. D.
Joannopoulos
,
G. W.
Turner
, and
O. L.
Alerhand
,
Phys. Rev. B
47
,
10326
(
1993
).
5.
G.
Lengel
,
R.
Wilkins
,
G.
Brown
,
M.
Weimer
,
J.
Gryko
, and
R. E.
Allen
,
Phys. Rev. Lett.
72
,
836
(
1994
).
6.
R. B.
Capaz
,
K.
Cho
, and
J. D.
Joannopoulos
,
Phys. Rev. Lett.
75
,
1811
(
1995
).
7.
S. B.
Zhang
and
A.
Zunger
,
Phys. Rev. Lett.
77
,
119
(
1996
).
8.
H.
Kim
and
J. R.
Chelikowsky
,
Phys. Rev. Lett.
77
,
1063
(
1996
);
[PubMed]
H.
Kim
and
J. R.
Chelikowsky
,
Surf. Sci.
409
,
435
(
1998
).
9.
Ph.
Ebert
,
P.
Quadbeck
,
K.
Urban
,
B.
Henninger
,
K.
Horn
,
G.
Schwarz
,
J.
Neugebauer
, and
M.
Scheffler
,
Appl. Phys. Lett.
79
,
2877
(
2001
).
10.
M.
Peressi
,
S.
Baroni
,
R.
Resta
, and
A.
Baldereschi
,
Phys. Rev. B
43
,
7347
(
1991
).
11.
G.
Biasol
,
L.
Sorba
,
G.
Bratina
,
R.
Nicolini
,
A.
Franciosi
,
M.
Peressi
,
S.
Baroni
,
R.
Resta
, and
A.
Baldereschi
,
Phys. Rev. Lett.
69
,
1283
(
1992
).
12.

The (110) slab geometry is obtained by applying periodic boundary conditions in the (11¯0), (110) and (001) directions. The former is used to describe repeated parallel slabs (containing nine atomic planes perpendicular to the (11¯0) direction in our case), separated by a vacuum region (of about 12Å in our case) large enough to guarantee a sufficient separation of two adjacent surfaces. The last two periodic boundary conditions are used to describe the infinite surface; the surface unit cell for the doped configurations has to be large enough (up to 20 atoms in the present cases) in order to guarantee a sufficient separation between periodic images of the impurities.

13.
S.
Baroni
,
A.
Dal Corso
,
S.
de Gironcoli
, and
P.
Giannozzi
, http://www.pwscf.org. We use pseudopotentials with the Perdew-Zunger exchange-correlation functional, plane-wave basis set expanded up to a kinetic energy cutoff of 14Ry, special-point technique (6×4×1 mesh for self-consistent calculations and a 12×8×2 mesh for non-self-consistent calculations for the clean surface; corresponding meshes for other configurations) and Gaussian broadening (smearing parameter equal to 0.01Ry) for Brillouin-zone integrations. Calculations are performed at 0K.
14.
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. Lett.
50
,
1998
(
1983
);
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. B
31
,
805
(
1985
).
You do not currently have access to this content.