We report a wafer scale approach for the fabrication of thin-film power generators composed of arrays of 400 p and n type ErAs:InGaAsInGaAlAs superlattice thermoelectric elements. The elements incorporate ErAs metallic nanoparticles into the semiconductor superlattice structure to provide charge carriers and create scattering centers for phonons. p- and n-type ErAs:InGaAsInGaAlAs superlattices with a total thickness of 5μm were grown on InP substrate using molecular beam epitaxy. The cross-plane Seebeck coefficients and cross-plane thermal conductivity of the superlattice were measured using test pattern devices and the 3ω method, respectively. Four hundred element power generators were fabricated from these 5μm thick, 200μm×200μm in area superlattice elements. The output power was over 0.7mW for an external resistor of 100Ω with a 30K temperature difference drop across the generator. We discuss the limitations to the generator performance and provide suggestions for improvements.

1.
G. J.
Snyder
,
J. R.
Lim
,
C. K.
Huang
, and
J. P.
Fleurial
,
Nat. Mater.
2
,
528
(
2003
).
3.
I. H.
Kim
,
Mater. Lett.
43
,
221
(
2000
).
4.
D. M.
Rowe
,
CRC Handbook of Thermoelectronics
(
CRC
, New York,
1995
).
5.
G.
Zeng
,
J. E.
Bowers
,
Y.
Zhang
, and
A.
Shakouri
, SiGeSi Superlattice Power Generators,
Clemson University Press
, Clemson, S.C.,
2005
, pp.
164
167
.
6.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O’Quinn
,
Nature (London)
413
,
597
(
2001
).
7.
T. E.
Humphrey
and
H.
Linke
,
Phys. Rev. Lett.
94
,
096601
4
(
2005
).
8.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
12727
(
1993
).
9.
T. C.
Harman
,
P. J.
Taylor
,
M. P.
Walsh
, and
B. E.
LaForge
,
Science
297
,
2229
(
2002
).
10.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
11.
T.
Koga
,
X.
Sun
,
S. B.
Cronin
, and
M. S.
Dresselhaus
,
Appl. Phys. Lett.
73
,
2950
(
1998
).
12.
T.
Koga
,
X.
Sun
,
S. B.
Cronin
, and
M. S.
Dresselhaus
,
Appl. Phys. Lett.
75
,
2438
(
1999
).
13.
A.
Shakouri
and
J. E.
Bowers
,
Appl. Phys. Lett.
71
,
1234
(
1997
).
14.
M. J.
Kelly
,
Low-Dimensional Semiconductors: Materials, Physics, Technology, Devices
(
Oxford University Press
, New York,
1995
).
15.
V. A.
Markel
and
T. F.
George
,
Optics of Nanostructured Materials
,
Wiley Series in Lasers and Applications
(
Wiley-Interscience
, New York,
2000
).
16.
T. M.
Tritt
,
Recent Trends in Thermoelectric Materials Research Iii
71, Ix–Xiv (
2001
).
17.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
16631
(
1993
).
18.
S. T.
Huxtable
,
A. R.
Abramson
,
C. L.
Tien
,
A.
Majumdar
,
C.
LaBounty
,
X.
Fan
,
G.
Zeng
,
J. E.
Bowers
,
A.
Shakouri
, and
E. T.
Croke
,
Appl. Phys. Lett.
80
,
1737
(
2002
).
19.
D.
Vashaee
and
A.
Shakouri
,
Phys. Rev. Lett.
92
,
106103
1
(
2004
).
20.
J. M.
Zide
,
D. O.
Klenov
,
S.
Stemmer
,
A. C.
Gossard
,
G.
Zeng
,
J. E.
Bowers
,
D.
Vashaee
, and
A.
Shakouri
,
Appl. Phys. Lett.
87
,
112102
(
2005
).
21.
G.
Zeng
,
J. E.
Bowers
,
Y.
Zhang
,
A.
Shakouri
,
J. M.
Zide
,
A. C.
Gossard
,
W.
Kim
, and
A.
Majumdar
, in ErAsInGaAs Superlattice Seebeck Coefficient (
Clemson University Press
, Clemson, S.C.,
2005
), pp.
485
488
.
22.
D. G.
Cahill
,
Rev. Sci. Instrum.
61
,
802
(
1990
).
You do not currently have access to this content.