We analyze the performance of a planar lens based on realistic negative index material in a generalized geometry. We demonstrate that the conventional superlens design (where the lens is centered between the object and the image) is not optimal from the resolution point of view, develop an analytical expression for the resolution limit of a generalized lens, use it to find the optimum lens configuration, and calculate the maximum absorption practical nearfield superlenses may have. We demonstrate that in contrast to the conventional superlens picture, planar imaging is typically accompanied by excitation of surface waves at both interfaces of the lens.

1.
V. G.
Veselago
,
Sov. Phys. Usp.
10
,
509
(
1968
).
2.
J. B.
Pendry
,
Phys. Rev. Lett.
85
,
3966
(
2000
).
3.
P. V.
Parimi
,
W. T.
Lu
,
P.
Vodo
, and
S.
Sridhar
,
Nature (London)
426
,
404
(
2003
).
4.
A.
Grbic
and
G. V.
Eleftheriades
,
Phys. Rev. Lett.
92
,
117403
(
2004
).
5.
V. A.
Podolskiy
and
E. E.
Narimanov
,
Phys. Rev. B
71
,
201101
(R) (
2005
);
A.
Govyadinov
and
V.
Podolskiy
(unpublished).
6.
N.
Fang
,
H.
Lee
,
C.
Sun
, and
X.
Zhang
,
Science
308
,
534
(
2005
).
7.
W.
Park
and
J.-B.
Lee
,
Appl. Phys. Lett.
85
,
4845
(
2004
).
8.
N.
Garcia
and
M.
Nieto-Vesperinas
,
Phys. Rev. Lett.
88
,
207403
(
2002
).
9.
J.
Pendry
,
Phys. Rev. Lett.
91
,
099701
(
2003
).
10.
M.
Nieto-Vesperinas
and
N.
Garcia
,
Phys. Rev. Lett.
91
,
099702
(
2003
).
11.
D. R.
Smith
,
D.
Schurig
,
M.
Rosenbluth
,
S.
Schultz
,
S. A.
Ramakrishna
, and
J. B.
Pendry
,
Appl. Phys. Lett.
82
,
1506
(
2003
).
12.
R.
Merlin
,
Appl. Phys. Lett.
84
,
1290
(
2004
).
13.
K. J.
Webb
,
M.
Yang
,
D. W.
Ward
, and
K. A.
Nelson
,
Phys. Rev. B
70
,
035602
(R) (
2004
);
M.-C.
Yang
and
K. J.
Webb
,
Opt. Lett.
30
,
2382
(
2005
).
[PubMed]
14.
I. A.
Larkin
and
M. I.
Stockman
,
Nano Lett.
5
,
339
(
2005
).
15.
V. A.
Podolskiy
and
E. E.
Narimanov
,
Opt. Lett.
30
,
75
(
2005
).
16.
G.
Shvets
,
Proc. SPIE
5221
,
124
(
2003
);
G.
Shvets
and
Y. A.
Urzhumov
,
Phys. Rev. Lett.
93
,
243902
(
2004
);
[PubMed]
G.
Shvets
and
Y. A.
Urzhumov
,
J. Opt. A, Pure Appl. Opt.
7
,
S23
(
2005
).
17.
E.
Cubukcu
,
K.
Aydin
,
E.
Ozbay
,
S.
Foteinopolou
, and
C. M.
Soukoulis
,
Phys. Rev. Lett.
91
,
207401
(
2003
).
18.
A. L.
Pokrovsky
and
A. L.
Efros
,
Appl. Opt.
42
,
5701
(
2003
).
19.
G.
Milton
,
N.-A.
Nicorovici
,
R.
McPhedran
, and
V.
Podolskiy
,
Proc. R. Soc. London, Ser. A
461
,
3999
(
2005
);
N.-A.
Nicorovici
,
R.
McPhedran
, and
G.
Milton
,
Phys. Rev. B
49
,
8479
(
1994
).
20.
N.
Kuhta
,
G.
Milton
, and
V.
Podolskiy
(unpublished).
21.
J. W.
Goodman
,
Introduction to Fourier Optics
(
Roberts & Company
,
Greenwood Village, CO
,
2004
);
M.
Born
and
E.
Wolf
,
Principles of Optics
, 7th ed. (
Cambridge University Press
,
New York
,
2003
).
22.
Note that for all practical applications ϵ,μ106 this condition is achievable only in near-field a,b<λ.
23.
Some applications may require a nonzero distance between the back surface lens and the image plane. In these systems, the a=b configuration is unachievable and the optimal configuration that minimizes b will need to be selected accordingly.
24.
V. A.
Podolskiy
,
A. K.
Sarychev
, and
V. M.
Shalaev
,
Opt. Express
11
,
735
(
2003
).
25.
S.
Linden
,
C.
Enkrich
,
M.
Wegener
,
J.
Zhou
,
T.
Koschny
, and
C. M.
Soukoulis
,
Science
306
,
1351
(
2004
).
You do not currently have access to this content.