The lattice location of B in Si has been investigated by channelling analyses using nuclear reactions (650keV proton beam, B11(p,α)Be8). The formation at room temperature of a specific, small B complex in presence of an excess of point defects has been inferred. In particular, B implanted in Si or B substitutional dissolved in Si and irradiated with proton beam form a unique B complex with B atoms not randomly located. The angular scans along the ⟨100⟩ and ⟨110⟩ axes are compatible with B–B pairs aligned along the ⟨100⟩ axis. The thermal annealing in the 200950°C range of the B complexes, analyzed by lattice location and carrier concentration measurements, depends on the residual defect density in the lattice. The B complexes dissolve at low temperature if no excess of Si self-interstitials (Is) exists or they evolve into large B clusters and then dissolve at high temperature if Is supersaturation holds.

1.
International Technology Roadmap for Semiconductors
(
Semiconductor Industry Association
, Austin, Texas,
2001
).
2.
E.
Rimini
,
Ion Implantation: Basics to Device Fabrication
(
Kluwer
, Dordrecht,
1995
), p.
175
.
3.
P. A.
Stolk
,
J. H.-J.
Gossmann
,
D. J.
Eaglesham
,
D. C.
Jacobson
,
C. S.
Rafferty
,
G. H.
Gilmer
,
M.
Jaraìz
,
J. M.
Poate
,
H. S.
Luftman
, and
T. E.
Haynes
,
J. Appl. Phys.
81
,
6031
(
1997
).
4.
A.
Armigliato
,
D.
Nobili
,
P.
Ostaja
,
M.
Servidori
, and
S.
Solmi
, in
Semiconductor Silicon 1977
, edited by
H.
Huff
and
E.
Sirtl
(
The Electrochemical Society
, Princeton, NJ,
1977
), Vol.
77-2
, p.
638
.
5.
L.
Pelaz
,
M.
Jaraiz
,
G. H.
Gilmer
,
H.-J.
Gossmann
,
C. S.
Rafferty
,
D. J.
Eaglesham
, and
J. M.
Poate
,
Appl. Phys. Lett.
70
,
2285
(
1997
).
6.
M.
Aboy
,
L.
Pelaz
,
L. A.
Marqués
,
P.
López
,
J.
Barbolla
, and
R.
Duffy
,
J. Appl. Phys.
97
,
103520
(
2005
).
7.
L.
Shao
,
J.
Liu
,
Q. Y.
Chen
, and
W. K.
Chu
,
Mater. Sci. Eng., R.
42
,
65
(
2003
).
8.
X.-Y.
Liu
,
W.
Windl
, and
M. P.
Masquelier
,
Appl. Phys. Lett.
77
,
2018
(
2000
).
9.
P.
Alippi
,
P.
Ruggerone
, and
L.
Colombo
,
Phys. Rev. B
69
,
125205
(
2004
).
10.
G.
Mannino
,
N. E. B.
Cowern
,
F.
Roozeboom
, and
J. G. M.
van Berkum
,
Appl. Phys. Lett.
76
,
855
(
2000
).
11.
S.
Mirabella
,
E.
Bruno
,
F.
Priolo
,
D.
De Salvador
,
E.
Napolitani
,
A. V.
Drigo
, and
A.
Carnera
,
Appl. Phys. Lett.
83
,
680
(
2003
).
12.
A. D.
Lilak
,
M. E.
Law
,
L.
Radic
,
K. S.
Jones
, and
M.
Clark
,
Appl. Phys. Lett.
81
,
2244
(
2002
).
13.
A. M.
Piro
,
L.
Romano
,
S.
Mirabella
, and
M. G.
Grimaldi
,
Appl. Phys. Lett.
86
,
81906
(
2005
).
14.
J. P.
Biersack
and
L.
Haggmark
,
Nucl. Instrum. Methods
174
,
257
(
1980
).
15.
J. R.
Tesmer
and
M.
Nastasi
,
Handbook of Modern Ion Beam Materials Analysis
(
Materials Research Society
, Pittsburgh,
1995
), and references therein.
16.
L.
Romano
,
E.
Napolitani
,
V.
Privitera
,
S.
Scalese
,
A.
Terrasi
,
S.
Mirabella
, and
M. G.
Grimaldi
,
Mater. Sci. Eng., B
102
,
49
(
2003
), and references therein.
17.
J.
Zhu
,
T.
Diaz dela Rubia
,
L. H.
Yang
,
C.
Mailhiot
, and
G. H.
Gilmer
,
Phys. Rev. B
54
,
4741
(
1996
).
18.
D. V.
Morgan
,
Channeling, Theory, Observation and Application
(
Wiley
, London,
1973
).
19.
M. D.
Giles
,
Appl. Phys. Lett.
62
,
1940
(
1993
).
20.
N. E. B.
Cowern
,
G.
Mannino
,
P. A.
Stolk
,
F.
Roozeboom
,
H. G. A.
Huizing
,
J. G. M.
van Berkum
,
F.
Cristiano
,
A.
Claverie
, and
M.
Jaraíz
,
Phys. Rev. Lett.
82
,
4460
(
1999
).
21.
L.
Pelaz
,
G. H.
Gilmer
,
H. J.
Gossmann
,
C. S.
Rafferty
,
M.
Jaraiz
, and
J.
Barbolla
,
Appl. Phys. Lett.
75
,
662
(
1999
).
You do not currently have access to this content.