We report the formation of gallium nitride (GaN) microcavities by manipulating a photoenhanced oxidation rate difference between the polar and nonpolar crystallographic planes of GaN. When immersed in a buffered acetic (CH3COOH) electrolyte of pH6.2 at room temperature, it is shown that the photo-oxidation can proceed at a rate that is one order of magnitude slower on the nonpolar plane of {11¯00}GaN than on the polar plane of {0001¯}GaN due to the reduced surface field action. Gallium nitride microcavities bounded by optically smooth {11¯00} and {11¯03} facets can thus be preferentially formed on the c-plane sapphire substrate after dissolving the oxide layer. The optical properties of these GaN hexagonal cavities reveal characteristic peaks of whispering gallery modes in resonance with the GaN band edge emission spectrum. A typical cavity Q factor of 103 is observed in these GaN microcavities due to a reduced optical scattering loss in the wet chemical reaction process.

1.
M.
Bayer
,
A.
Forchel
,
Th. L.
Reinecke
,
P. A.
Knipp
, and
S.
Rudin
,
Phys. Status Solidi A
191
,
3
(
2002
).
2.
Confined Electrons and Photons
NATO ASI series B: Physics
Vol.
340
, edited by
E.
Burstein
and
C.
Weisbuch
(
Plenum
, New York,
1995
).
3.
For a recent review, please see
K. J.
Vahala
,
Nature (London)
424
,
839
(
2003
);
Optical Processes in Microcavities
, edited by
R. K.
Chang
and
A. J.
Campillo
(
World Scientific
, Singapore,
1996
).
4.
For a recent review, please see
T.
Baba
,
IEEE J. Sel. Top. Quantum Electron.
3
,
808
(
1997
).
5.
K.
Djordjev
,
S. J.
Choi
,
S. J.
Choi
, and
P. D.
Dapkus
,
J. Lightwave Technol.
20
,
105
(
2002
).
6.
N.
Yokouchi
,
A. J.
Danner
, and
K. D.
Choquette
,
IEEE J. Sel. Top. Quantum Electron.
10
,
1439
(
2003
).
7.
S. L.
McCall
,
A. F. J.
Levi
,
R. E.
Slusher
,
S. J.
Pearton
, and
R. A.
Logan
,
Appl. Phys. Lett.
60
,
289
(
1992
).
8.
S.
Nakamura
and
G.
Fasol
,
The Blue Laser Diode
(
Springer
, Berlin,
1997
).
9.
H. X.
Jiang
and
J. Y.
Lin
,
Crit. Rev. Solid State Mater. Sci.
28
,
131
(
2003
).
10.
M. A.
Khan
,
G.
Simin
,
J.
Yang
,
J.
Zhang
,
A.
Koudymov
,
M. S.
Shur
,
R.
Gaska
,
X.
Hu
, and
A.
Tarakji
,
IEEE Trans. Microwave Theory Tech.
51
,
624
(
2003
).
11.
G.
Vecchi
,
J.
Torres
,
D.
Coquillat
,
M. Le V.
d’Yerville
, and
A. M.
Malvezzi
,
Appl. Phys. Lett.
84
,
1245
(
2004
).
12.
J.
Torres
,
D.
Coquillat
,
R.
Legros
,
J. P.
Lascaray
,
F.
Teppe
,
D.
Scalbert
,
D.
Peyrade
,
Y.
Chen
,
O.
Briot
,
M. Le V.
d’Yerville
,
E.
Cassagne
, and
J. P.
Albert
,
Phys. Rev. B
69
,
085105
(
2004
).
13.
S.
Chang
,
N. B.
Rex
,
R. K.
Chang
,
G.
Chong
, and
L. J.
Guido
,
Appl. Phys. Lett.
75
,
166
(
1999
).
14.
M.
Kneissl
,
M.
Teepe
,
N.
Miyashita
,
N. M.
Johnson
,
G. D.
Chern
, and
R. K.
Chang
,
Appl. Phys. Lett.
84
,
2485
(
2004
).
15.
K. J.
Choi
,
H. W.
Jang
, and
J.-L.
Lee
,
Appl. Phys. Lett.
82
,
1233
(
2003
).
16.
K. C.
Zeng
,
L.
Dai
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
75
,
2563
(
1999
).
17.
E. D.
Haberer
,
R.
Sharma
,
C.
Meier
,
A. R.
Stonas
,
S.
Nakamura
,
S. P.
DenBaars
, and
E. L.
Hu
,
Appl. Phys. Lett.
85
,
5179
(
2004
).
18.
C.
Marinelli
,
M.
Bordovsky
,
L. J.
Sargent
,
M.
Gioannini
,
J. M.
Rorison
,
R. V.
Penty
,
I. H.
White
,
P. J.
Heard
,
M.
Benyoucef
,
M.
Kuball
,
G.
Hasnain
,
T.
Takeuchi
, and
R. P.
Schneider
,
Appl. Phys. Lett.
79
,
4076
(
2001
).
19.
M. S.
Minsky
,
M.
White
, and
E. L.
Hu
,
Appl. Phys. Lett.
68
,
1531
(
1996
).
20.
C.
Youtsey
,
I.
Adesida
,
L. T.
Romano
, and
G.
Bulman
,
Appl. Phys. Lett.
72
,
560
(
1998
).
21.
C.
Youtsey
,
I.
Adesida
, and
G.
Bulman
,
Appl. Phys. Lett.
71
,
2151
(
1997
).
22.
D. A.
Stocker
,
E. F.
Schubert
, and
J. M.
Redwing
,
Appl. Phys. Lett.
73
,
2654
(
1998
).
23.
L.-H.
Peng
,
C.-H.
Liao
,
Y.-C.
Hsu
,
C.-S.
Jong
,
C.-N.
Huang
,
J.-K.
Ho
,
C.-C.
Chiu
, and
C.-Y.
Chen
,
Appl. Phys. Lett.
76
,
511
(
2000
).
24.
L.-H.
Peng
,
C.-W.
Chuang
,
J.-K.
Ho
,
C.-N.
Huang
, and
C.-Y.
Chen
,
Appl. Phys. Lett.
72
,
939
(
1998
).
25.
L.-H.
Peng
,
C.-W.
Chuang
,
Y.-C.
Hsu
,
J.-K.
Ho
,
C.-N.
Huang
, and
C.-Y.
Chen
,
IEEE J. Sel. Top. Quantum Electron.
4
,
564
(
1998
).
26.
H.
Matsushima
,
M.
Yamaguchi
,
K.
Hiramatsu
, and
N.
Sawaki
,
J. Cryst. Growth
189/190
,
78
(
1998
).
27.
L.-H.
Peng
,
C.-W.
Shih
,
C.-M.
Lai
,
C.-C.
Chuo
, and
J.-I.
Chyi
,
Appl. Phys. Lett.
82
,
4268
(
2003
).
28.
T.
Takeuchi
,
H.
Amano
, and
I.
Akasaki
,
Jpn. J. Appl. Phys., Part 1
39
,
413
(
2000
).
29.
T.
Nobis
,
E. M.
Kaidashev
,
A.
Rahm
,
M.
Lorenz
, and
M.
Grundmann
,
Phys. Rev. Lett.
93
,
103903
(
2004
).
30.
S.
Bidnyk
,
B. D.
Little
,
Y. H.
Cho
,
J.
Krasinski
,
J. J.
Song
,
W.
Yang
, and
S. A.
McPherson
,
Appl. Phys. Lett.
73
,
2242
(
1998
).
31.
R. E.
Slusher
,
A. F. J.
Levi
,
U.
Mohideen
,
S. L.
McCall
,
S. J.
Pearton
, and
R. A.
Logan
,
Appl. Phys. Lett.
63
,
1310
(
1993
).
32.
J. C.
Johnson
,
H.-J.
Choi
,
K. P.
Knutsen
,
R. D.
Schaller
,
P.
Yang
, and
R. J.
Saykally
,
Nat. Mater.
1
,
106
(
2002
).
You do not currently have access to this content.