Cupric oxide (CuO) nanoparticles (NPs) are fabricated in silica glasses (SiO2) by Cu-ion implantation and following thermal oxidation. First, Cu metal NPs were formed in SiO2 by the implantation of Cu negative ions of 60 keV to 6×1016ionscm2, and then the Cu NPs were oxidized to CuO NPs by annealing at 400–1000 °C in oxygen-gas flow. After the oxidation at 600 °C for 1 h, the surface plasmon resonance peak of metallic Cu NPs disappears. Grazing-incidence x-ray diffraction confirms the disappearance of Cu NPs and the formation of CuO NPs, but excludes the formation of Cu2O NPs which are thermodynamically less stable under atmospheric oxygen pressure. The CuO NPs show higher thermal stability up to 1000°C than Cu NPs.

1.
R. F.
Haglund
,
L.
Yang
,
R. H.
Magruder
,
C. W.
White
,
R. A.
Zhur
,
L.
Yang
,
R.
Dorsinville
, and
R. R.
Alfano
,
Nucl. Instrum. Methods Phys. Res. B
91
,
493
(
1994
).
2.
Y.
Takeda
,
C. G.
Lee
, and
N.
Kishimoto
,
Nucl. Instrum. Methods Phys. Res. B
191
,
422
(
2002
).
3.
S.
Roorda
,
T.
van Dillen
,
A.
Polman
,
C.
Graf
,
A.
van Blaaderen
, and
B. J.
Kooi
,
Adv. Mater. (Weinheim, Ger.)
16
,
235
(
2004
).
4.
A. L.
Stepanov
,
U.
Kreibig
,
D. E.
Hole
,
R. I.
Khaibullin
,
I. B.
Khaibullin
, and
V. N.
Popok
,
Nucl. Instrum. Methods Phys. Res. B
178
,
120
(
2001
).
5.
H.
Amekura
,
N.
Umeda
,
Y.
Takeda
,
J.
Lu
, and
N.
Kishimoto
,
Appl. Phys. Lett.
85
,
1015
(
2004
).
6.
H.
Amekura
,
N.
Umeda
,
Y.
Takeda
,
J.
Lu
,
K.
Kono
, and
N.
Kishimoto
,
Nucl. Instrum. Methods Phys. Res. B
230
,
193
(
2005
).
7.
H.
Amekura
,
N.
Umeda
,
Y.
Sakuma
,
N.
Kishimoto
, and
Ch.
Buchal
,
Appl. Phys. Lett.
87
,
013109
(
2005
).
8.
N.
Kishimoto
,
Y.
Takeda
,
V. T.
Gritsyna
,
E.
Iwamoto
, and
T.
Saito
,
IEEE Trans. from 1998 International Conference on Ion Impl. Tech. Proc
., edited by
J.
Matsuo
,
G.
Takaoka
, and
I.
Yamada
(
IEEE
, Piscataway, NJ,
1999
), p.
342
.
9.
J. F.
Ziegler
,
J. P.
Biersack
and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
, New York,
1985
), Chap. 8.
10.
H.
Amekura
,
Y.
Takeda
, and
N.
Kishimoto
,
Nucl. Instrum. Methods Phys. Res. B
222
,
96
(
2004
).
11.
R.
Ruppin
,
J. Appl. Phys.
59
,
1355
(
1986
).
12.
N.
Kishimoto
,
V. T.
Gritsyna
,
K.
Kono
,
H.
Amekura
, and
T.
Saito
,
Mater. Res. Soc. Symp. Proc.
438
,
435
(
1997
).
13.
H.
Amekura
,
H.
Kitazawa
,
N.
Umeda
,
Y.
Takeda
, and
N.
Kishimoto
,
Nucl. Instrum. Methods Phys. Res. B
222
,
114
(
2004
).
14.
K.
Fukumi
,
A.
Chayahara
,
K.
Ohora
,
N.
Kitamura
,
Y.
Horino
,
K.
Fujii
,
M.
Makihara
,
J.
Hayakaya
, and
N.
Ohno
,
Nucl. Instrum. Methods Phys. Res. B
149
,
77
(
1999
).
15.
N.
Umeda
,
N.
Kishimoto
,
Y.
Takeda
,
C. G.
Lee
, and
V. T.
Gritsyna
,
Nucl. Instrum. Methods Phys. Res. B
166–167
,
864
(
2000
).
16.
T.
Masumi
,
H.
Yamaguchi
,
T.
Ito
, and
H.
Shimoyama
,
J. Phys. Soc. Jpn.
67
,
67
(
1998
).
17.
T.
Ito
and
T.
Masumi
,
J. Phys. Soc. Jpn.
66
,
2185
(
1997
).
18.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic
, San Diego,
1998
).
19.
G.
Mie
,
Ann. Phys.
25
,
377
(
1908
) [in German].
20.

JCPDS library, No. 40836 for Cu, No. 481548 for CuO and No. 50667 for Cu2O, International Centre for Diffraction Data.

21.
R. D.
Schmidt-Whitley
,
M.
Martinez-Clemente
, and
A.
Revcolecschi
,
J. Cryst. Growth
23
,
113
(
1974
).
22.
M.
Ikeyama
,
S.
Nakao
,
M.
Tazawa
,
K.
Kadono
, and
K.
Kamada
,
Nucl. Instrum. Methods Phys. Res. B
175–177
,
652
(
2001
).
You do not currently have access to this content.