Formation of quantum antidots at the immediate neighborhood of Au nanocluster has been proposed in order to explain the observed nonlinear optical behavior of magnesium oxide (MgO) when Au nanoclusters were dispersed in it. In this letter, using high-angle annular dark-field imaging in an aberration-corrected scanning transmission electron microscope, we report the direct observation of clustering of vacancies in excess of Au atoms to form quantum antidots at the immediate neighborhood of the Au clusters, leading to a spatially associated Au nanoclusters and the quantum antidots. The antidots show a terraced layer structure and are typically faceted along the MgO{100} planes.

1.
P.
Chakraborty
,
J. Mater. Sci.
33
,
2235
(
1998
).
2.
J. D.
Budai
,
C. W.
White
,
S. P.
Withrow
,
M. F.
Chisholm
,
J.
Zhu
, and
R. A.
Zuhr
,
Nature (London)
390
,
384
(
1997
).
3.
A.
Mendrum
,
L. A.
Boatner
, and
C. W.
White
,
Nucl. Instrum. Methods Phys. Res. B
178
,
7
(
2000
).
4.
I. J.
Maasilta
and
V. J.
Goldman
,
Phys. Rev. Lett.
84
,
1776
(
2000
).
5.
B. J.
Kooi
,
A.
van Veen
,
J. Th. M.
De Hosson
,
H.
Schut
,
A. V.
Fedorov
, and
F.
Labohm
,
Appl. Phys. Lett.
76
,
1110
(
2000
).
6.
M. A.
van Huis
,
A. V.
Fedorov
,
B. J.
Kooi
,
A.
van Veen
,
P. J. M.
Smulders
,
B. J.
Kooi
, and
J. Th. M
De Hosson
,
Nucl. Instrum. Methods Phys. Res. B
166–167
,
225
(
2000
).
7.
A.
Van Veen
,
H.
Schut
,
A. V.
Fedorov
,
F.
Labohm
,
E. A. C.
Neeft
, and
R. J. M.
Konings
,
Nucl. Instrum. Methods Phys. Res. B
148
,
768
(
1999
).
8.
M.
Lu
,
C.
Lupu
, and
J. W.
Rabalais
,
Appl. Phys. Lett.
81
,
5033
(
2002
).
9.
A.
Van Veen
,
M. A.
van Huis
,
A. V.
Fedorov
,
H.
Schut
,
F.
Labohm
,
B. J.
Kooi
, and
J. Th. M.
De Hosson
,
Nucl. Instrum. Methods Phys. Res. B
191
,
610
(
2002
).
10.
J.
Xu
,
A. P.
Mills
 Jr.
,
A.
Ueda
,
D. O.
Henderson
, and
S.
Ishibashi
,
Phys. Rev. Lett.
83
,
4586
(
1999
).
11.
J.
Xu
,
J.
Moxom
,
S. H.
Overbury
,
C.
White
,
A. P.
Mills
, Jr.
, and
R.
Suzuki
,
Phys. Rev. Lett.
88
,
175502
(
2002
).
12.
U.
Kaiser
,
D. A.
Muller
,
J. L.
Grazul
,
A.
Chuvilin
, and
M.
Kawasaki
,
Nat. Mater.
1
,
102
(
2002
).
13.
P. M.
Voyles
,
D. M.
Muller
,
J. L.
Grazul
,
P. H.
Citrin
, and
H. J. L.
Gossmann
,
Nature (London)
416
,
826
(
2002
).
14.
P. E.
Batson
,
N.
Dellby
, and
O. L.
Krivanek
,
Nature (London)
418
,
617
(
2002
).
15.
D. A.
Muller
,
T.
Sorsch
,
S.
Moccio
,
F. H.
Baumann
,
K.
Evans-Lutterodt
, and
G.
Timp
,
Nature (London)
399
,
758
(
1999
).
16.
N. D.
Browning
,
M. F.
Chisholm
, and
S. J.
Pennycook
,
Nature (London)
366
,
143
(
1993
).
17.
M.
Haider
,
S.
Uhlemann
,
E.
Schwan
,
B.
Kabius
, and
K.
Urban
,
Nature (London)
392
,
768
(
1998
).
18.
E. J.
Kirkland
,
Advanced Computing in Electron Microscopy
(
Plenum
, New York,
1998
).
19.
J. D.
Eshelby
, in
The Physics of Metals
, edited by
P. B.
Hirsch
(
Cambridge University Press
, Cambridge,
1975
), p.
1
.
20.
D. M.
Saylor
and
G.
Rohrer
,
Interface Sci.
9
,
35
(
2001
).
21.
D.
Kinderlehrer
,
S.
Ta’asan
,
I.
Livshits
, and
D. E.
Mason
,
Interface Sci.
10
,
233
(
2002
).
You do not currently have access to this content.