Optical bowing coefficients are used to describe the band gap variation of a composite semiconductor alloy. It is known to be related to the electronic structure and the lattice deformation in the semiconductor alloys. Spectroscopic ellipsometry study shows that the optical bowing coefficient of slightly Cu-poor polycrystalline Cu0.9In1xGaxSe2 is larger than that of stoichiometric polycrystalline CuIn1xGaxSe2 and band gaps are larger when Cu becomes poor. This can be explained by an increase in valence band offset due to reduced p-d coupling and an increase of perturbation potential ΔV due to lattice deformation.

1.
K.
Ramanathan
,
M. A.
Contreras
,
C. L.
Perkins
,
S.
Asher
,
F. S.
Hasoon
,
J.
Keane
,
D.
Young
,
M.
Romero
,
W.
Metzger
,
R.
Noufi
,
J.
Ward
, and
A.
Duda
,
Prog. Photovolt. Res. Appl.
11
,
225
(
2003
).
2.
M. I.
Alonso
,
K.
Wakita
,
J.
Pascual
,
M.
Garriga
, and
N.
Yamamoto
,
Phys. Rev. B
63
,
075203
(
2001
).
3.
M. I.
Alonso
,
M.
Garriga
,
C. A.
Durante Rincön
,
E.
Hernández
, and
M.
León
,
Appl. Phys. A: Mater. Sci. Process.
74
,
659
(
2002
).
4.
R.
Herberholz
,
U.
Rau
,
H. W.
Schock
,
T.
Haalboom
,
T.
Gödecke
,
F.
Ernst
,
C.
Beilharz
,
K. W.
Benz
, and
D.
Cahen
,
Eur. Phys. J.: Appl. Phys.
6
,
131
(
1999
).
5.
I. M.
Kötschau
and
H. W.
Schock
,
J. Phys. Chem. Solids
64
,
1559
(
2003
).
6.
C.
Persson
and
A.
Zunger
,
Phys. Rev. Lett.
91
,
266401
(
2003
).
7.
S.-H.
Han
,
A. M.
Hermann
,
F. S.
Hasoon
,
H. A.
Al-Thani
, and
D. H.
Levi
,
Appl. Phys. Lett.
85
,
576
(
2004
).
8.
S.-H.
Wei
and
A.
Zunger
,
Phys. Rev. Lett.
76
,
664
(
1996
).
9.
S.-H.
Wei
and
A.
Zunger
,
J. Appl. Phys.
78
,
3846
(
1995
).
10.
T.
Yamaguchi
,
J.
Matsufusa
, and
A.
Yoshida
,
J. Appl. Phys.
72
,
5657
(
1992
).
11.
T.
Negami
,
N.
Kohara
,
M.
Nishitani
,
T.
Wada
, and
T.
Hirao
,
Appl. Phys. Lett.
67
,
825
(
1995
).
12.
R. M. A.
Azzam
and
N. M.
Bashara
,
Ellipsometry and Polarized Light
(
North-Holland
, Amsterdam,
1986
).
13.
S.-H.
Han
,
F. S.
Hasoon
,
H. A.
Al-Thani
,
A. M.
Hermann
, and
D. H.
Levi
,
Appl. Phys. Lett.
86
,
021903
(
2005
).
14.
P.
Lautenschlager
,
M.
Garriga
,
S.
Logothetidis
, and
M.
Cardona
,
Phys. Rev. B
35
,
9174
(
1987
).
15.
A.
Savitzky
and
M. J. E.
Golay
,
Anal. Chem.
36
,
1627
(
1964
).
16.
J.
Steinier
,
Y.
Termonia
, and
J.
Deltour
,
Anal. Chem.
44
,
1906
(
1972
).
17.
J. L.
Shay
and
J. H.
Wernick
,
Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications
, 1st ed. (
Pergamon
, Oxford,
1975
).
18.
D. S.
Albin
,
J. J.
Carapella
,
J. R.
Tuttle
, and
R.
Noufi
,
Mater. Res. Soc. Symp. Proc.
228
,
267
(
1992
).
19.
G.
Marín
,
S.
Tauleigne
,
S. M.
Wasim
,
R.
Guevara
,
J. M.
Delgado
,
C.
Rincón
,
A. E.
Mora
, and
G.
Sánchez Pérez
,
Mater. Res. Bull.
33
,
1057
(
1998
).
20.
L.
Durán
,
S. M.
Wasim
,
C. A.
Durante Rincón
,
E.
Hernández
,
C.
Rincón
,
J. M.
Delgado
,
J.
Castro
, and
J.
Contreras
,
Phys. Status Solidi A
199
,
220
(
2003
).
21.
A.
Zunger
,
S.-H.
Wei
,
L. G.
Ferreira
, and
J. E.
Bernard
,
Phys. Rev. Lett.
65
,
353
(
1990
).
22.
S.-H.
Wei
,
L. G.
Ferreira
,
J. E.
Bernard
, and
A.
Zunger
,
Phys. Rev. B
42
,
9622
(
1990
).
23.
S.-H.
Wei
and
A.
Zunger
,
Phys. Rev. B
43
,
1662
(
1992
).
24.
S.-H.
Wei
,
S. B.
Zhang
, and
A.
Zunger
,
Appl. Phys. Lett.
72
,
3199
(
1998
).
You do not currently have access to this content.