We report on SiO2AlGaNGaN metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs), which exhibit a 6.7Wmm power density at 7GHz. Unpassivated and SiO2-passivated heterostructure field-effect transistors (HFETs) were also investigated for comparison. Deposited 12nm thick SiO2 yielded an increase of the sheet carrier density from 7.6×1012to9.2×1012cm2 and a subsequent increase of the static drain saturation current from 0.75to1.09Amm. The small-signal rf characterization of the MOSHFETs showed an extrinsic current gain cutoff frequency fT of 24GHz and a maximum frequency of oscillation fmax of 40GHz. The output power of 6.7Wmm of the MOSHFETs measured at 7GHz is about two times larger than that of HFETs. The results obtained demonstrate the suitability of GaN-based MOSHFETs for high-power electronics.

1.
M. A.
Khan
,
X.
Hu
,
A.
Tarakji
,
G.
Simin
,
J.
Yang
,
R.
Gaska
, and
M. S.
Shur
,
Appl. Phys. Lett.
77
,
1339
(
2000
).
2.
M. A.
Khan
,
G.
Simin
,
J.
Yang
,
J.
Zhang
,
A.
Koudymov
,
M. S.
Shur
,
R.
Gaska
,
X.
Hu
, and
A.
Tarakji
,
IEEE Trans. Microwave Theory Tech.
51
,
624
(
2003
).
3.
K.
Balachander
,
S.
Arulkumaran
,
Y.
Sano
,
T.
Egawa
, and
K.
Baskar
,
Phys. Status Solidi A
202
,
R32
(
2005
).
4.
E. M.
Chumbes
,
J. A.
Smart
,
T.
Prunty
, and
J. R.
Shealy
,
IEEE Trans. Electron Devices
48
,
416
(
2001
).
5.
V.
Adivarahan
,
M.
Gaevski
,
W. H.
Sun
,
H.
Fatima
,
A.
Koudymov
,
S.
Saygi
,
G.
Simin
,
J.
Yang
,
M. A.
Khan
,
A.
Tarakji
,
M. S.
Shur
, and
R.
Gaska
,
IEEE Electron Device Lett.
24
,
541
(
2003
).
6.
T.
Hashizume
,
S.
Ananthanasarn
,
N.
Negoro
,
E.
Sano
,
H.
Hasegawa
,
K.
Kumakura
, and
T.
Makimoto
,
Jpn. J. Appl. Phys., Part 2
43
,
L777
(
2004
).
7.
P. D.
Ye
,
B.
Yang
,
K. K.
Ng
,
J.
Bude
,
G. D.
Wilk
,
S.
Halder
, and
J. C.
Hwang
,
Appl. Phys. Lett.
86
,
063501
(
2005
).
8.
D.-H.
Cho
,
M.
Shimizu
,
T.
Ide
,
H.
Ookita
, and
H.
Okumura
,
Jpn. J. Appl. Phys., Part 1
41
,
4481
(
2002
).
9.
Y.
Cai
,
Y. G.
Zhou
,
K. J.
Chen
, and
K. M.
Lau
,
Appl. Phys. Lett.
86
,
032109
(
2005
).
10.
M. B.
Green
,
K. K.
Chu
,
E. M.
Chumbes
,
J. A.
Smart
,
J. R.
Shealy
, and
L. F.
Eastman
,
IEEE Electron Device Lett.
21
,
268
(
2000
).
11.
T.
Hashizume
,
S.
Ootomo
,
T.
Inagaki
, and
H.
Hasegawa
,
J. Vac. Sci. Technol. B
21
,
1828
(
2003
).
12.
J.
Bernát
,
D.
Gregušová
,
G.
Heidelberger
,
A.
Fox
,
M.
Marso
,
H.
Lüth
, and
P.
Kordoš
,
Electron. Lett.
41
,
667
(
2005
).
13.
G.
Simin
,
A.
Koudymov
,
Z.-J.
Yang
,
V.
Adivarahan
,
J.
Yang
, and
M. A.
Khan
,
IEEE Electron Device Lett.
26
,
56
(
2005
).
14.
J.
Bernát
,
P.
Javorka
,
M.
Marso
, and
P.
Kordoš
,
Appl. Phys. Lett.
83
,
5455
(
2003
).
15.
P.
Kordoš
,
J.
Bernát
, and
M.
Marso
,
Microelectron. J.
36
,
438
(
2005
).
16.
Y.
Ando
,
Y.
Okamoto
,
H.
Miyamoto
,
T.
Nakayama
,
T.
Inoue
, and
M.
Kuzuhara
,
IEEE Electron Device Lett.
24
,
289
(
2003
).
You do not currently have access to this content.