We report on strong photoluminescence of Si-based materials produced in large quantities. This is achieved by the disproportionation action of commercial bulk silicon monoxide at temperatures above 850°C which results in the formation of Si nanocrystals surrounded by an amorphous silicon oxide matrix. High-resolution electron microscopy investigations reveal a broad size distribution of the silicon nanocrystals with a maximum at 44.5nm, for samples annealed at 900 and 950°C. X-ray diffraction and photoluminescence spectra indicate the coexistence of amorphous Si clusters in the samples, that have not fully undergone the amorphous/crystalline transition. This method could be suitable for the production in large quantities of Si-based bulk photoluminescent materials.

1.
L. T.
Canham
,
Appl. Phys. Lett.
57
,
1046
(
1990
).
2.
A. G.
Cullis
,
L. T.
Canham
, and
P. D. J.
Calcott
,
J. Appl. Phys.
82
,
909
(
1997
).
3.
H.
Takagi
,
H.
Ogawa
,
Y.
Yamazaki
,
A.
Ishizaki
, and
T.
Nakagiri
,
Appl. Phys. Lett.
56
,
2379
(
1990
).
4.
Y.
Kanemitsu
,
T.
Ogawa
,
K.
Shiraishi
, and
K.
Takeda
,
Phys. Rev. B
48
,
4883
(
1993
).
5.
Y.
Osaka
,
K.
Tsunetomo
,
F.
Yoyomura
,
H.
Myoren
, and
K.
Kohno
,
Jpn. J. Appl. Phys., Part 2
31
,
L365
(
1992
).
6.
Y.
Kanemitsu
,
H.
Uto
,
Y.
Masumoto
, and
Y.
Maeda
,
Appl. Phys. Lett.
61
,
2187
(
1992
).
7.
H. A.
Atwater
,
K. V.
Shcheglov
,
S. S.
Wong
,
K. J.
Vahala
,
R. C.
Flagan
,
M. L.
Brongersma
, and
A.
Polman
,
Mater. Res. Soc. Symp. Proc.
316
,
409
(
1994
).
8.
T.
Shimizu-Iwayama
,
M.
Oshima
,
T.
Niimi
,
S.
Nakao
,
K.
Saitoh
,
T.
Fujita
, and
N.
Itoh
,
J. Phys.: Condens. Matter
5
,
L375
(
1993
).
9.
T.
Fisher
,
V.
Petrova-Koch
,
K.
Shcheglov
,
M. S.
Brandt
, and
F.
Koch
,
Thin Solid Films
276
,
100
(
1996
).
10.
J.
Heitmann
,
F.
Müller
,
M.
Zacharias
, and
U.
Gösele
,
Adv. Mater. (Weinheim, Ger.)
17
,
795
(
2005
).
11.
Z. H.
Lu
,
D. J.
Lockwood
, and
J. M.
Baribeau
,
Nature (London)
378
,
258
(
1995
).
12.
M.
Zacharias
,
J.
Heitmann
,
R.
Scholz
,
U.
Kahler
,
M.
Schmidt
, and
J.
Bläsing
,
Appl. Phys. Lett.
80
,
661
(
2002
).
13.
A. J.
Kenyon
,
P. F.
Trwoga
,
C. W.
Pitt
, and
G.
Rehm
,
J. Appl. Phys.
79
,
9291
(
1996
).
14.
T.
Shimitzu-Iwayama
,
K.
Fujita
,
S.
Nakao
,
K.
Saitoh
,
T.
Fujita
, and
N.
Itoh
,
J. Appl. Phys.
75
,
7779
(
1994
).
15.
M.
Mamiya
,
H.
Takei
,
M.
Kikuchi
, and
C.
Uyeda
,
J. Cryst. Growth
229
,
457
(
2001
).
16.
M.
Mamiya
,
M.
Kikuchi
, and
H.
Takei
,
J. Cryst. Growth
237
,
1909
(
2002
).
17.
R. Q.
Zhang
,
M. W.
Zhao
, and
S. T.
Lee
,
Phys. Rev. Lett.
93
,
095503
(
2004
).
18.
T.
Takagahara
and
K.
Takeda
,
Phys. Rev. B
46
,
15578
(
1992
).
19.
U.
Kahler
and
H.
Hofmeister
,
Opt. Mater. (Amsterdam, Neth.)
17
,
83
(
2001
).
20.
A.
Hohl
,
T.
Wieder
,
P. A.
Van Aken
,
T. E.
Weirich
,
G.
Denninger
,
M.
Vidal
,
S.
Oswald
,
C.
Deneke
,
J.
Mayer
, and
H.
Fuess
,
J. Non-Cryst. Solids
320
,
255
(
2003
) and references therein.
21.
L. X.
Yi
,
J.
Heitmann
,
R.
Scholz
, and
M.
Zacharias
,
Appl. Phys. Lett.
81
,
4248
(
2002
).
22.
L. X.
Yi
,
J.
Heitmann
,
R.
Scholz
, and
M.
Zacharias
,
J. Phys.: Condens. Matter
15
,
S2887
(
2003
).
23.
H.
Rinnert
,
M.
Vergnat
,
G.
Marchal
, and
A.
Burneau
,
J. Lumin.
80
,
445
(
1999
).
24.
H.
Rinnert
,
O.
Jambois
,
M.
Vergnat
, and
M.
Molinari
,
Opt. Mater. (Amsterdam, Neth.)
27
,
983
(
2005
).
25.
G.
Allan
,
C.
Delerue
, and
M.
Lannoo
,
Phys. Rev. Lett.
78
,
3161
(
1997
).
You do not currently have access to this content.