Metal heterostructures constructed surface plasmon polaritons (SPPs) Bragg reflectors and nanocavities on flat metallic surfaces are proposed and demonstrated numerically. A metal heterowaveguide structured by alternately stacking two kinds of metal gap waveguides (MGWs) shows periodically effective refraction index modulation to SPPs and produces SPP propagation on flat metallic surfaces a band gap in certain frequencies, known as plasmonic band gap, in which SPP propagation is forbidden. Changing the width of one MGW in the heterowaveguide, a SPP nanocavity with high quality factor can be created. Our results imply a broad possibility of constructed SPP-based Bragg reflectors, emitter, and filters, etc., on flat metallic surfaces for planar nanometeric photonic networks.

1.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
,
Nature (London)
424
,
824
(
2003
).
2.
J.-C.
Weeber
,
J. R.
Krenn
,
A.
Dereux
,
B.
Lamprecht
,
Y.
Lacroute
, and
J. P.
Goudonnet
,
Phys. Rev. B
64
,
045411
(
2001
).
3.
J. R.
Krenn
,
A.
Dereux
,
J. C.
Weeber
,
E.
Bourillot
,
Y.
Lacroute
,
J. P.
Goudonnet
,
G.
Schider
,
W.
Gotschy
,
A.
Leitner
,
F. R.
Aussenegg
, and
C.
Girard
,
Phys. Rev. Lett.
82
,
2590
(
1999
).
4.
S. A.
Maier
,
P. G.
Kik
,
H. A.
Atwater
,
S.
Meltzer
,
E.
Harel
,
B. E.
Koel
, and
A. A. G.
Requicha
,
Nat. Mater.
2
,
229
(
2003
).
5.
H. J.
Lezec
,
A.
Degiron
,
E.
Devaux
,
R. A.
Linke
,
L.
Martin-Moreno
,
F. J.
Garcia-Vidal
, and
T. W.
Ebbesen
,
Science
297
,
820
(
2002
).
6.
K.
Li
,
M. I.
Stockman
, and
D. J.
Bergman
,
Phys. Rev. Lett.
91
,
227402
(
2003
).
7.
S. I.
Bozhevolnyi
,
J.
Erland
,
K.
Leosson
,
P. M. W.
Skovgaard
, and
J. M.
Hvam
,
Phys. Rev. Lett.
86
,
3008
(
2001
).
8.
H.
Dilbacher
,
J. R.
Krenn
,
G.
Schider
,
A.
Leitner
, and
F. R.
Aussenegg
,
Appl. Phys. Lett.
81
,
1762
(
2002
).
9.
S. C.
kitson
,
W. L.
Barnes
, and
J. R.
Sambles
,
Phys. Rev. Lett.
.
77
,
2670
(
1996
).
10.
J.-C.
Weeber
,
Y.
Lacroute
,
A.
Dereux
,
E.
Devaux
,
T.
Ebbesen
,
C.
Girard
,
M. U.
González
, and
A.-L.
Baudrion
,
Phys. Rev. B
70
,
235406
(
2004
).
11.
B.
Wang
and
G. P.
Wang
,
Appl. Phys. Lett.
.
85
,
3599
(
2004
).
12.
B.
Wang
and
G. P.
Wang
,
Opt. Lett.
17
,
1992
(
2004
).
13.
I. P.
Kaminow
,
W. L.
Mammel
, and
H. P.
Weber
,
Appl. Opt.
13
,
396
(
1974
).
14.
J. B.
Pendry
,
J. Mod. Opt.
41
,
209
(
1994
).
15.
R. P.
Stabley
,
R.
Houdré
,
U.
Oesterle
,
M.
Ilegems
, and
C.
Weisbuch
,
Phys. Rev. A
48
,
2246
(
1993
).
16.
S. M.
Spillane
,
T. J.
Kippenberg
, and
K. J.
Vahala
,
Nature (London)
415
,
621
(
2002
).
17.
S.
Fan
,
P. R.
Villeneuve
, and
J. D.
Joannopoulos
,
Phys. Rev. Lett.
80
,
960
(
1998
).
18.
P. A.
Hobson
,
S.
Wedge
,
J. A. E.
Wasey
,
I.
Sage
, and
W. L.
Barnes
,
Adv. Mater. (Weinheim, Ger.)
14
,
1393
(
2002
).
19.
A.
Tredicucci
,
C.
Gmachl
,
F.
Capasso
,
A. L.
Hutchinson
,
D. L.
Sivco
, and
A. Y.
Cho
,
Appl. Phys. Lett.
76
,
2164
(
2000
).
20.
M. P.
Nezhad
,
K.
Tetz
, and
Y.
Fainman
,
Opt. Express
12
,
4073
(
2004
).
You do not currently have access to this content.