Low-temperature photoluminescence spectrum of the transition metal Cr-doped GaN (GaCrN) shows unusual high-intensity emission lines at 3.365 and 3.311 eV. The spectrum also contains a weak neutral donor bound excitonic transition of wurtzite GaN at 3.47 eV, free excitonic transition of GaCrN at 3.29 eV, and two low-intensity lines at 3.24 and 3.17 eV. From our investigations, we attribute these high-intensity lines to the stacking faults which can bind excitons and are due to the coexistence of wurtzite and zinc blende phases of GaN. The 3.24 and 3.17 eV lines are interpreted as phonon replica lines of the 3.31 eV emission line.
REFERENCES
1.
T.
Kondo
, S.
Kuwabara
, H.
Owa
, and H.
Munekata
, J. Cryst. Growth
237
, 1353
(2000
).2.
M.
Hashimoto
, Y. K.
Zhou
, M.
Kanamura
, H.
Katayama-Yoshida
, and H.
Asahi
, J. Cryst. Growth
252
, 499
(2003
).3.
N.
Teraguchi
, A.
Suzuki
, Y.
Nanisi
, Y. K.
Zhou
, M.
Hashimoto
, and H.
Asahi
, Solid State Commun.
122
, 651
(2002
).4.
E.
Oh
, H.
Park
, and Y.
Park
, Appl. Phys. Lett.
72
, 70
(1998
).5.
M.
Hashimoto
, Y. K.
Zhou
, M.
Kannamura
, and H.
Asahi
, Solid State Commun.
122
, 37
(2002
).6.
M.
Hashimoto
, H.
Tanaka
, R.
Asano
, S.
Hasegawa
, and H.
Asahi
, Appl. Phys. Lett.
84
, 4191
(2004
).7.
L.
Eckey
, J. Ch.
Holst
, P.
Maxim
, R.
Heitz
, A.
Haffmann
, I.
Broser
, B. K.
Meyer
, C.
Wetzel
, E. N.
Mokhov
, and P. G.
Baranov
, Appl. Phys. Lett.
68
, 415
(1996
).8.
Z.
Chen
, D.-C.
Lu
, X.
Liu
, X.
Wang
, P.
Han
, D.
Wang
, H.
Yuan
, Z.
Wang
, G.
Li
, and Z.
Fang
, J. Appl. Phys.
93
, 316
(2003
).9.
K. W.
Mah
, J. P.
Mosnier
, E.
McGlynn
, M. O.
Henry
, D.
O’Mahony
, and J. G.
Lunney
, Appl. Phys. Lett.
80
, 3301
(2002
).10.
Y.-H.
Kwon
, S. K.
Shee
, G. H.
Gainer
, G. H.
Park
, S. J.
Hwang
, and J. J.
Song
, Appl. Phys. Lett.
76
, 840
(2000
).11.
G.
Martinez-Criado
, A.
Cros
, A.
Cantarero
, R.
Dimitrov
, O.
Ambacher
, and M.
Stutzmann
, J. Appl. Phys.
88
, 3470
(2000
).12.
Y.
Shon
, Y. H.
Kwon
, T. W.
Kang
, X.
Fan
, D.
Fu
, and Y.
Kim
, J. Cryst. Growth
245
, 193
(2002
).13.
H.
Siegle
, L.
Eckey
, A.
Hoffmann
, C.
Thomsen
, B. K.
Meyer
, D.
Schikora
, M.
Hankeln
, and K.
Lischka
, Solid State Commun.
96
, 943
(1995
).14.
J. I.
Pankove
, J. E.
Berkeyheiser
, H. P.
Maruska
, and J.
Wittke
, Solid State Commun.
8
, 1051
(1970
).15.
R.
Dai
, S.
Fu
, J.
Xie
, G.
Fan
, G.
Hu
, H.
Schrey
, and C.
Klingshirn
, J. Phys. C
15
, 393
(1982
).16.
M. A.
Reshchikov
, D.
Huang
, F.
Yun
, P.
Visconti
, L.
He
, H.
Morkoc
, J.
Jasinski
, Z.
Liliental-Weber
, R. J.
Molnar
, S. S.
Park
, and K. Y.
Lee
, J. Appl. Phys.
94
, 5623
(2003
).17.
S.
Fischer
, C.
Wetzel
, E. E.
Haller
, and B. K.
Mayer
, Appl. Phys. Lett.
67
, 1248
(1995
).18.
G. P.
Das
, B. K.
Rao
, and P.
Jena
, Phys. Rev. B
69
, 214422
(2004
).19.
M.
Hashimoto
, H.
Tanaka
, S.
Emura
, M. S.
Kim
, T.
Honma
, N.
Umesaki
, Y. K.
Zhou
, S.
Hasegawa
, and H.
Asahi
, J. Cryst. Growth
273
, 149
(2004
).20.
Z. Z.
Bandic
, T. C.
McGill
, and Z.
Ikonic
, Phys. Rev. B
56
, 3564
(1997
).21.
© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.