This letter demonstrates the use of catalyst nanoparticles prepared by ion implantation for growth of carbon nanotubes (CNTs) via chemical vapor deposition. Nickel ions of energy in 100keV were first implanted at room temperature into silicon dioxide to doses of 10151017cm2. Postimplantation annealing was conducted to induce precipitation of implanted Ni atoms into nanoparticles. The samples were chemically etched to expose Ni nanoparticles on the surface. Finally, CNT growth on such prepared SiO2 substrates was achieved via chemical vapor deposition through decomposition of hydrocarbon. Our data show strong correlation in the size of resultant tube structures and preformed catalyst nanoparticles, with larger Ni nanoparticles resulting in larger tube diameters. This work may provide an effective way for seeding catalyst nanoparticles in high-aspect-ratio via/trench structures for growing CNTs for interconnect applications.

1.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
2.
M. M. J.
Treacy
,
T. W.
Ebbesen
, and
J. M.
Gibson
,
Nature (London)
381
,
678
(
1996
).
3.
E. W.
Wong
,
P. E.
Sheehan
, and
C. M.
Lieber
,
Science
277
,
1971
(
1997
).
4.
P. M.
Ajayan
,
O.
Stephan
,
C.
Colliex
, and
D.
Trauth
,
Science
265
,
1212
(
1994
).
5.
H.
Dai
,
E. W.
Wong
, and
C. M.
Liber
,
Science
272
,
523
(
1996
).
6.
P. M.
Ajayan
and
T. W.
Ebbesen
,
Rep. Prog. Phys.
60
,
1025
(
1997
).
7.
P. G.
Collins
,
A.
Zettl
,
H.
Bando
,
A.
Thess
, and
R. E.
Smalley
,
Science
278
,
100
(
1997
).
8.
T. W.
Ebbesen
and
P. M.
Ajayan
,
Nature (London)
358
,
220
(
1992
).
9.
A.
Thess
,
R.
Lee
,
P.
Nikolaev
,
H. J.
Dai
,
P.
Petit
,
J.
Robertand
,
C. H.
Xu
,
Y. H.
Lee
,
S. G.
Kim
,
A. G.
Rinzler
,
D. T.
Colbert
,
G. E.
Scuseria
,
D.
Tomanek
,
J. E.
Fischer
, and
R. E.
Smalley
,
Science
273
,
5274
(
1996
).
10.
J.
Kong
,
H. T.
Soh
,
A. M.
Cassell
,
C. F.
Quate
, and
H.
Dai
,
Nature (London)
395
,
878
(
1998
).
11.
V.
Zhirnov
,
D.
Herr
, and
M.
Meyyappan
,
J. Nanopart. Res.
1
,
151
(
1999
).
12.
B. Q.
Wei
,
R.
Vajtai
, and
P. M.
Ajayan
,
Appl. Phys. Lett.
79
,
1172
(
2001
).
13.
J.
Li
,
Q.
Ye
,
A.
Cassell
,
H. T.
Ng
,
R.
Stevens
,
J.
Han
, and
M.
Meyyappan
,
Appl. Phys. Lett.
82
,
2491
(
2003
).
14.
E.
Cattaruzza
,
F.
Gonella
,
G.
Mattei
,
P.
Mazzoldi
,
D.
Gatteschi
,
S.
Sangregorio
,
M.
Falconieri
,
G.
Salvetti
, and
G.
Battaglin
,
Appl. Phys. Lett.
73
,
1176
(
1998
).
15.
T.
Kobayashi
,
A.
Nakanishi
,
F.
Fukumura
, and
G.
Langouche
,
J. Appl. Phys.
83
,
4631
(
1998
).
16.
A.
Meldrum
,
L. A.
Boatner
, and
C. W.
White
,
Nucl. Instrum. Methods Phys. Res. B
178
,
7
(
2001
).
17.
J. M.
Mao
,
L. F.
Sun
,
L. X.
Qian
,
Z. W.
Pan
,
B. H.
Chang
,
W. Y.
Zhou
,
G.
Wang
, and
S. S.
Xie
,
Appl. Phys. Lett.
72
,
3297
(
1998
).
18.
S. B.
Sinnott
,
R.
Andrews
,
D.
Qian
,
A. M.
Rao
,
Z.
Mao
,
E. C.
Dickey
, and
F.
Derbyshire
,
Chem. Phys. Lett.
315
,
25
(
1999
).
19.
M.
Chhowalla
,
K. B. K.
Teo
,
C.
Ducati
,
N. L.
Rupesinghe
,
G. A. J.
Amaratunga
,
A. C.
Ferrari
,
D.
Roy
,
J.
Robertson
, and
W. I.
Milne
,
J. Appl. Phys.
90
,
5308
(
2001
).
20.
S. J.
Henley
,
C. H. P.
Poa
,
A. A. D. T.
Adikaari
,
C. E.
Giusca
,
J. D.
Carey
, and
S. R. P.
Silva
,
Appl. Phys. Lett.
84
,
4035
(
2004
).
You do not currently have access to this content.