The recombination kinetics of Te isoelectronic centers in ZnS1xTex(0.0065x0.85) alloys is studied by time-resolved photoluminescence (TRPL) at low temperature. The measured radiative recombination lifetimes of different Te bound exciton states are quite different, varying from a few nanoseconds to tens of nanosecond. As the bound exciton state evolves from a single Te impurity (Te1) to larger Te clusters (Ten,n=2,3,4), the recombination lifetime increases. It reaches maximum (40ns) for the Te4 bound states at x=0.155. The increase of the exciton lifetime is attributed to the increasing exciton localization effect caused by larger localization potential. In the large Te composition range (x>0.155), the exciton recombination lifetime decreases monotonically with Te composition. It is mainly due to the hybridization between the Te localized states and the host valence band states. The composition dependences of the exciton binding energy and the photoluminescence (PL) line width show the similar tendency that further support the localization picture obtained from the TRPL measurement.

1.
D. G.
Thomas
,
J. J.
Hopfield
, and
C. J.
Frosch
,
Phys. Rev. Lett.
15
,
857
(
1965
).
2.
S. H.
Wei
and
A.
Zunger
,
Phys. Rev. Lett.
76
,
664
(
1996
).
3.
W.
Shan
,
W.
Walukiewicz
,
J. W.
Ager
 III
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
,
J. M.
Olson
, and
S. R.
Kurtz
,
Phys. Rev. Lett.
82
,
1221
(
1999
).
4.
X. D.
Luo
,
J. S.
Huang
,
Z. Y.
Xu
,
C. L.
Yang
,
J.
Liu
,
W. K.
Ge
,
Y.
Zhang
,
A.
Mascarenhas
,
H. P.
Xin
, and
C. W.
Tu
,
Appl. Phys. Lett.
82
,
1697
(
2003
).
5.
I. K.
Sou
,
K. S.
Wong
,
Z. Y.
Yang
,
H.
Wang
, and
G. K. L.
Wong
,
Appl. Phys. Lett.
66
,
1915
(
1995
).
6.
T.
Fukushima
and
S.
Shionoya
,
Jpn. J. Appl. Phys.
12
,
549
(
1973
).
7.
A.
Abdel-Kader
,
F. J.
Bryant
, and
J. H. C.
Hong
,
Phys. Status Solidi A
81
,
333
(
1984
).
8.
O.
Geode
,
W.
Heimbrodt
,
T.
Lau
,
G.
Matzkeit
, and
B.
Selle
,
Phys. Status Solidi A
94
,
259
(
1986
);
W.
Heimbrodt
and
O.
Geode
,
Phys. Status Solidi B
135
,
543
(
1986
).
9.
Z. L.
Fang
,
F. H.
Su
,
B. S.
Ma
,
K.
Ding
,
H. X.
Han
,
G. H.
Li
,
I. K.
Sou
, and
W. K.
Ge
,
Appl. Phys. Lett.
81
,
3170
(
2002
).
10.
Z. L.
Fang
,
G. H.
Li
,
N. Z.
Liu
,
Z. M.
Zhu
,
H. X.
Han
,
K.
Ding
,
W. K.
Ge
, and
I. K.
Sou
,
Phys. Rev. B
66
,
085203
(
2002
).
11.
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
J. W.
Ager
 III
,
E. E.
Haller
,
I.
Miotkowski
,
A. K.
Ramdas
,
Ching-Hua
Su
,
I. K.
Sou
,
R. C. C.
Perera
, and
J. D.
Denlinger
,
Phys. Rev. B
67
,
035207
(
2003
).
12.
Jingbo
Li
and
Lin-Wang
Wang
,
Phys. Rev. B
67
,
205319
(
2003
).
13.
J.
Feldmann
,
G.
Peter
,
E. O.
Göbel
,
P.
Dawson
,
K.
Moore
,
C. T.
Foxon
, and
R. J.
Elliott
,
Phys. Rev. Lett.
59
,
2337
(
1987
).
14.
15.
P. R. C.
Kent
and
Alex
Zunger
,
Appl. Phys. Lett.
82
,
559
(
2003
).
16.
R.
Hill
and
D.
Richardson
,
J. Phys. C
6
,
L115
(
1973
).
17.
N. Z.
Liu
,
G. H.
Li
,
Z. M.
Zhu
,
H. X.
Han
,
Z. P.
Wang
,
W. K.
Ge
, and
I. K.
Sou
,
J. Phys.: Condens. Matter
10
,
4119
(
1998
).
18.
M. J.
Seong
,
H.
Alawadhi
,
I.
Miotkowski
,
A. K.
Ramdas
, and
S.
Miotkowska
,
Phys. Rev. B
60
,
R16275
(
1999
).
19.
M. J. S. P.
Brasil
,
R. E.
Nahory
,
F. S.
Turco-Sandroff
,
H. L.
Gilchrist
, and
R. J.
Martin
,
Appl. Phys. Lett.
58
,
2509
(
1991
).
You do not currently have access to this content.