We present kinetic nonlattice Monte Carlo atomistic simulations to investigate the role of Si interstitials in B cluster dissolution. We show that the presence of Si interstitials from an oxidizing anneal stabilize B clusters and slow down B cluster dissolution, compared to anneal in inert ambient. We have also analyzed the influence of injected Si interstitials from end of range defects, due to preamorphizing implants, on B deactivation and reactivation processes. We have observed that the B cluster evolution can be clearly correlated to the evolution of Si interstitial defects at the end of range. The minimum level of activation occurs when the Si interstitial supersaturation is low because the end of range defects have dissolved or reach very stable configurations, such as dislocation loops.

1.
D. J.
Eaglesham
,
P. A.
Stolk
,
H.-J.
Gossmann
, and
J. M.
Poate
,
Appl. Phys. Lett.
65
,
2305
(
1994
).
2.
N. E. B.
Cowern
,
K. T. F.
Janssen
, and
H. F. F.
Jos
,
J. Appl. Phys.
68
,
6191
(
1990
).
3.
L.
Pelaz
,
V. C.
Venezia
,
H.-J.
Gossmann
,
G. H.
Gilmer
,
A. T.
Fiory
,
C. S.
Rafferty
,
M.
Jaraiz
, and
J.
Barbolla
,
Appl. Phys. Lett.
75
,
662
(
1999
).
4.
S.
Solmi
,
L.
Mancini
,
S.
Milita
,
M.
Servidore
,
G.
Mannino
, and
M.
Bersani
,
Appl. Phys. Lett.
79
,
1103
(
2001
).
5.
T. E.
Haynes
,
D. J.
Eaglesham
,
P. A.
Stolk
,
H.-J.
Gossmann
,
D. C.
Jacobson
, and
J. M.
Poate
,
Appl. Phys. Lett.
69
,
1376
(
1996
).
6.
M.
Jaraiz
,
L.
Pelaz
,
J. E.
Rubio
,
J.
Barbolla
,
G. H.
Gilmer
,
D. J.
Eaglesham
,
H.-J.
Gossmann
, and
J. M.
Poate
,
Mater. Res. Soc. Symp. Proc.
532
,
43
(
1998
).
7.
X.-Y.
Liu
,
W.
Windl
, and
Michael P.
Masquelier
,
Appl. Phys. Lett.
77
,
2018
(
2000
).
8.
M. J.
Caturla
,
M. D.
Johnson
, and
T. Diaz
de la Rubia
,
Appl. Phys. Lett.
72
,
2736
(
1998
).
9.
M.
Aboy
,
L.
Pelaz
,
L. A.
Marqués
,
J.
Barbolla
,
A.
Mokhberi
,
Y.
Takamura
,
P. B.
Griffin
, and
J. D.
Plummer
,
Appl. Phys. Lett.
83
,
4166
(
2003
).
10.
S. M.
Hu
,
J. Appl. Phys.
45
,
1567
(
1974
).
11.
L.
Radic
,
A. D.
Lilak
, and
M. E.
Law
,
Appl. Phys. Lett.
81
,
826
(
2002
).
12.
P. A.
Packan
and
J. D.
Plummer
,
J. Appl. Phys.
68
,
4327
(
1990
).
13.
G.
Mannino
,
S.
Solmi
,
V.
Privitera
, and
M.
Bersani
,
Appl. Phys. Lett.
79
,
3764
(
2001
).
14.
M. H.
Clark
,
K. S.
Jones
,
T. E.
Haynes
,
C. J.
Barbour
,
K. G.
Minor
, and
E.
Andideh
,
Appl. Phys. Lett.
80
,
4163
(
2002
).
15.
E.
Landi
,
A.
Armigliato
,
S.
Solmi
,
R.
Köghler
, and
E.
Wieser
,
Appl. Phys. A
47
,
359
(
1998
).
16.
J.-Y.
Jin
,
J.
Liu
,
U.
Jeong
,
S.
Mehta
, and
K.
Jones
,
J. Vac. Sci. Technol. B
20
,
422
(
2002
).
17.
B. J.
Pawlak
,
R.
Surdeanu
,
B.
Colombeau
,
A. J.
Smith
,
N. E. B.
Cowern
,
R.
Lindsay
,
W.
Vandervorst
,
B.
Brijs
,
O.
Richard
, and
F.
Cristiano
,
Appl. Phys. Lett.
84
,
2055
(
2004
).
18.
A.
Mattoni
and
L.
Colombo
,
Phys. Rev. B
69
,
045204
(
2004
).
19.
We use the following expression for the sheet resistance 1qμpC(x)dx, where C(x) is the active B concentration and μp the mobility at room temperature, which is given by an standard expression 49.7+(479.3749.71+(C(x)1.606×1017)0.7)cm2Vs.
20.
M.
Aboy
,
L.
Pelaz
,
L. A.
Marqués
,
L.
Enríquez
, and
J.
Barbolla
,
J. Appl. Phys.
94
,
1010
(
2003
).
21.
V. C.
Venezia
,
R.
Kalyanaraman
,
H.-J.
Gossmann
,
C. S.
Rafferty
, and
P.
Werner
,
Appl. Phys. Lett.
79
,
1429
(
2001
).
You do not currently have access to this content.