We demonstrate an alternative path for achieving high transconductance organic transistors in spite of relatively large source to drain distances. The improvement of the electronic characteristic of such a scheme is equivalent to a 60-fold increase in mobility of the underlying organic semiconductor. The method is based on percolating networks, which we create from a dispersion of individual single-wall carbon nanotubes and narrow ropes within an organic semiconducting host. The majority of current paths between source and drain follow the metallic nanotubes but require a short, switchable semiconducting link to complete the circuit. With these nanotube-semiconducting composites we achieve effectively a 60× reduction in source to drain distance, which is equivalent to a 60-fold increase of the “effective” mobility of the starting semiconducting material with a minor decrease of the on/off current ratio. These field-induced percolating networks allow for the fabrication of high-transconductance transistors having relatively large source to drain distances that can be manufactured inexpensively by commercially available printing techniques.

1.
H.
Sirringhaus
,
T.
Kawase
,
R. H.
Friend
,
T.
Shimoda
,
M.
Inbasekaran
,
W.
Wu
, and
E. P.
Woo
,
Science
290
,
2123
(
2000
).
2.
G. B.
Blanchet
,
Y. L.
Loo
,
J. A.
Rogers
,
C. R.
Fincher
, and
F.
Gao
,
Appl. Phys. Lett.
82
,
463
(
2003
).
3.
J. A.
Rogers
,
Z.
Bao
,
K.
Baldwin
,
A.
Dodabalapur
,
B.
Crone
,
V. R.
Raju
,
V.
Kuck
,
H.
Katz
,
K.
Amundson
,
J.
Ewing
, and
P.
Drzaic
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
4835
(
2001
).
4.
C. J.
Drury
,
C. M. J.
Mutsaers
,
C. M.
Hart
,
M.
Hatters
, and
D. M.
de Leeuw
,
Appl. Phys. Lett.
73
,
108
(
1998
).
5.
C. D.
Dimitrakopoulos
and
P. R. L.
Malenfant
,
Adv. Mater. (Weinheim, Ger.)
14
,
99
(
2002
).
6.
Z.
Yao
,
C. L.
Kane
, and
C.
Dekker
,
Appl. Phys. Lett.
84
,
2941
(
2004
).
7.
E. S.
Snow
,
J. P.
Novak
,
P. M.
Campbell
, and
D.
Park
,
Appl. Phys. Lett.
82
,
2145
(
2003
).
8.
K.
Xiao
,
Y. Q.
Liu
,
P. A.
Hu
,
G.
Yu
,
X. B.
Wang
, and
D. B.
Zhu
,
Appl. Phys. Lett.
83
,
150
(
2003
).
9.
M.
Meitl
,
Y.
Zhou
,
A.
Gaur
,
S.
Jeon
,
M.
Usrey
,
M.
Strano
, and
J.
Rogers
,
Nano Lett.
4
(
9
),
1643
(
2004
).
10.
G.
Blanchet
,
C. R.
Fincher
, and
F.
Gao
,
Appl. Phys. Lett.
82
,
1290
(
2003
).
11.
G. B.
Blanchet
,
C. R.
Fincher
,
M.
Lefenfeld
, and
J. A.
Rogers
,
Appl. Phys. Lett.
84
,
296
(
2004
).
12.
G.
Blanchet
,
K.
Bailey
,
S.
Subramoney
,
G.
Jaycox
, and
C.
Nuckols
,
Appl. Phys. Lett.
85
,
828
(
2004
).
13.
M. S.
Strano
,
C. A.
Dyke
,
M. L.
Usrey
,
P. W.
Barone
,
M. J.
Allen
,
H. W.
Shan
,
C.
Kittrell
,
R. H.
Hauge
,
J. M.
Tour
, and
R. E.
Smalley
,
Science
301
,
1519
(
2003
).
14.
M. S.
Strano
,
V. C.
Moore
,
M. K.
Miller
,
M. J.
Allen
,
E. H.
Haroz
,
C.
Kittrell
,
R. H.
Hauge
, and
R. E.
Smalley
,
J. Nanosci. Nanotechnol.
3
,
81
(
2003
).
15.
M. S.
Strano
,
J. Am. Chem. Soc.
125
,
16148
(
2003
).
16.
S.
Stafstrom
and
J. L.
Bredas
,
Phys. Rev. B
38
,
4180
(
1988
).
17.
H.
Kataura
,
Y.
Kumazawa
,
Y.
Maniwa
,
I.
Umezu
,
S.
Susuki
,
Y.
Ohtsuka
, and
Y.
Aciba
,
Synth. Met.
103
,
2555
(
1999
).
18.
P.
Petit
,
C.
Mathis
,
C.
Journet
, and
P.
Bernier
,
Chem. Phys. Lett.
305
,
370
(
1999
).
19.
A. B.
Kaiser
,
G.
Dusberg
, and
S.
Roth
,
Phys. Rev. B
57
,
1418
(
1998
).
20.
H.
Sirrinhaus
,
P. J.
Brown
,
R. H.
Friend
,
M. M.
Nielsen
,
K.
Bechgaard
,
B. M. W.
Langeveld-Voss
,
A. J. H.
Spiering
,
R. A. J.
Janssen
,
E. W.
Meijer
,
P.
Herwig
, and
D. M.
de Leeuw
,
Nature (London)
401
,
685
(
1999
).
21.
M.
Sahimi
and
G. R.
Jerauld
,
J. Phys. A
17
,
L165
(
1984
).
22.
R.
Firsch
and
A. B.
Harris
,
Phys. Rev. B
18
,
416
(
1978
).
You do not currently have access to this content.