Mass production of single-crystalline CdS nanobelts is achieved by thermal evaporation of CdS powders with the presence of Au catalyst. The as-synthesized CdS nanobelts are usually hundreds of nanometers to tens of micrometers in width, tens of nanometers in thickness, and several hundreds of micrometers in length. CdS nanobelts have a pronounced increase in conductance of up to four orders of magnitude upon exposure to white light, and also very fast response time about 1–3 s. The photoconductivity mechanism of CdS nanobelts is discussed. The results demonstrate the potential of fabricating nanosized photoconductors and optical switches using the integrity of a single CdS nanobelt.

1.
S. J.
Tans
,
M. H.
Devoret
,
H.
Dai
,
A.
Thess
,
R. E.
Smalley
,
L. J.
Geerligs
, and
C.
Dekker
,
Nature (London)
386
,
474
(
1997
).
2.
R.
Martel
,
T.
Schmidt
,
H. R.
Shea
,
T.
Hertel
, and
P.
Avouris
,
Appl. Phys. Lett.
73
,
2447
(
1998
).
3.
J.
Hu
,
M.
Ouyang
,
P.
Yang
, and
C. M.
Lieber
,
Nature (London)
399
,
48
(
1999
).
4.
X. F.
Duan
,
Y.
Huang
,
R.
Agarwal
, and
C. M.
Lieber
,
Nature (London)
421
,
241
(
2003
).
5.
J.
Kong
,
N. R.
Franklin
,
C.
Zhou
,
M. G.
Chapline
,
S.
Peng
,
K.
Cho
, and
H.
Dai
,
Science
287
,
622
(
2000
).
6.
Y.
Cui
,
Q.
Wei
,
H.
Park
, and
C. M.
Lieber
,
Science
293
,
1289
(
2001
).
7.
C.
Li
,
D.
Zhang
,
X.
Liu
,
S.
Han
,
T.
Tang
,
J.
Han
, and
C.
Zhou
,
Appl. Phys. Lett.
82
,
1613
(
2003
).
8.
M.
Law
,
H.
Kind
,
B.
Messer
,
F.
Kim
, and
P.
Yang
,
Angew. Chem., Int. Ed.
41
,
2405
(
2002
).
9.
J.
Wang
,
M. S.
Gudiksen
,
X.
Duan
,
Y.
Cui
, and
C. M.
Lieber
,
Science
293
,
1455
(
2001
).
10.
H.
Kind
,
H.
Yan
,
B.
Messer
,
M.
Law
, and
P.
Yang
,
Adv. Mater. (Weinheim, Ger.)
14
,
158
(
2002
).
11.
D.
Zhang
,
C.
Li
,
S.
Han
,
X.
Liu
,
T.
Tang
,
W.
Jin
, and
C.
Zhou
,
Appl. Phys. A: Mater. Sci. Process.
76
,
163
(
2003
).
12.
Z. W.
Pan
,
Z. R.
Dai
, and
Wang
,
Z. L.
Science
291
,
1947
(
2001
).
13.
E.
Comini
,
G.
Faglia
,
G.
Sberveglieri
,
Z. W.
Pan
, and
Z. L.
Wang
,
Appl. Phys. Lett.
81
,
1869
(
2002
).
14.
M. S.
Arnold
,
P.
Avouris
,
Z. W.
Pan
, and
Z. L.
Wang
,
J. Phys. Chem. B
107
,
659
(
2003
).
15.
C.
Ma
,
D.
Moore
,
J.
Li
, and
Z. L.
Wang
,
Adv. Mater. (Weinheim, Ger.)
15
,
228
(
2003
).
16.
Q.
Li
and
C.
Wang
,
Appl. Phys. Lett.
83
,
359
(
2003
).
17.
L.
Dong
,
J.
Jiao
,
M.
Coulter
, and
L.
Love
,
Chem. Phys. Lett.
376
,
653
(
2003
).
18.
K. M.
Ip
,
C. R.
Wang
,
Q.
Li
, and
S. K.
Hark
,
Appl. Phys. Lett.
84
,
795
(
2004
).
19.
T.
Gao
and
T. H.
Wang
,
J. Phys. Chem. B
108
,
20045
(
2004
).
20.
D. J.
Peña
,
J. K. N.
Mbindyo
,
A. J.
Carado
,
T. E.
Mallouk
,
C. D.
Keating
,
B.
Razavi
, and
T. S.
Mayer
,
J. Phys. Chem. B
106
,
7458
(
2002
).
21.
C.
Wu
and
R. H.
Bube
,
J. Appl. Phys.
45
,
648
(
1974
).
22.
J. W.
Orton
,
B. J.
Goldsmith
,
J. A.
Chapman
, and
M. J.
Powell
,
J. Appl. Phys.
53
,
1602
(
1982
).
23.
M. T. S.
Nair
,
P. K.
Nair
,
R. A.
Zingaro
, and
E. A.
Meyers
,
J. Appl. Phys.
74
,
1879
(
1993
).
You do not currently have access to this content.