We have used micro-Auger electron spectroscopy, cathodoluminescence spectroscopy, and work function measurements in copper indium gallium diselenide polycrystalline solar cell films cleaved in ultrahigh vacuum. We establish that, relative to the grain interior, the grain boundary shows (1) a Cu composition decrease, as large as a factor of two, (2) a work function decrease of up to 480 meV, and (3) no additional radiative recombination centers despite a high concentration of grain boundary (GB) defects. These results confirm theoretical predictions that (i) polar GB interfaces are stabilized by massive (50%) removal of Cu atoms, leading to (ii) a valence band offset between GB and grain interiors that (iii) repels holes from the GB, thus likely reducing GB electron-hole recombination and improving photovoltaic (and other photonic) device operation.

1.
K.
Ramanathan
,
M. A.
Contreras
,
C. L.
Perkins
,
S.
Asher
,
F. S.
Hasoon
,
J.
Keane
,
D.
Young
,
M.
Romero
,
W.
Metzger
,
R.
Noufi
,
J.
Ward
, and
A.
Duda
,
Prog. Photovolt. Res. Appl.
11
,
225
(
2003
).
2.
A.
Rockett
,
A.
Agarwal
,
L.-C.
Yang
,
E.
Banda
,
G.
Kenshole
,
C. J.
Kiely
, and
H.
Talich
,
Proceedings of the 21st IEEE Photovoltaic Specialists Conference
(
IEEE
, New York,
1990
), p.
764
.
3.
C.
Persson
and
A.
Zunger
,
Phys. Rev. Lett.
91
,
266401
(
2003
).
4.
N.
Moll
,
A.
Kley
,
E.
Pehlke
, and
M.
Schaffer
,
Phys. Rev. B
54
,
8844
(
1996
).
5.
J. E.
Jaffe
and
A.
Zunger
,
Phys. Rev. B
64
,
241304
(R) (
2001
).
6.
I.
Visoly-Fisher
,
S. R.
Cohen
,
A.
Ruzin
, and
D.
Cahen
,
Adv. Mater. (Weinheim, Ger.)
16
,
879
(
2004
), the authors reported scanning Kelvin probe measurements on CdTeCdS films, showing that the GBs are depleted. They suggested that this is due to electrostatic band bending created by the positively charged donor Cl-on-Te, following the CdCl2 treatment. This specialized mechanism is different from the non-electrostatic band offset discussed earlier in Ref. 2 for ternary (chalcopyrite) systems
7.
S.
Schuler
,
S.
Nishiwaki
,
J.
Beckmann
,
N.
Rega
,
S.
Brehme
,
S.
Siebentritt
, and
M. C.
Lux-Steiner
,
Proceedings of the 29th IEEE Photovoltaic Specialist Conference
(
IEEE
, New York,
2002
), p.
504
.
8.
M. A.
Contreras
,
J.
Tuttle
,
A.
Gabor
,
A.
Tennant
,
K.
Ramanathan
,
S.
Asher
,
A.
Franz
,
J.
Keane
,
L.
Wang
, and
R.
Noufi
,
Proceedings of the First WCPEC ∕ 24th IEEE Photovoltaic Specialist Conference
(
IEEE
, New York
1994
), p.
68
.
9.
Ch.
Sommerhalter
,
S.
Sadewasser
,
Th.
Glatzel
,
Th. W.
Matthes
,
A.
Jäger-Waldau
, and
M. Ch.
Lux-Steiner
,
Surf. Sci.
482–485
,
1362
(
2001
).
10.
C.-S.
Jiang
,
R.
Noufi
,
J. A.
AbuShama
,
K.
Ramanathan
,
H. R.
Moutinho
,
J.
Pankow
, and
M. M.
Al-Jassim
,
Appl. Phys. Lett.
84
,
3477
(
2004
).
11.
M. J.
Romero
,
K.
Ramanathan
,
M. A.
Contreras
,
M. M.
Al-Jassim
,
R.
Noufi
, and
P.
Sheldon
,
Appl. Phys. Lett.
83
,
4770
(
2003
).
12.
SIMS depth profiles of these CIGS films indicate Na outdiffusion from the soda-lime glass, pileup at both Mo-CIGS and Mo-glass interfaces, but no detectable diffusion into the CIGS. Furthermore, there are no systematic AES or work function variations versus depth attributable to Na outdiffusion. This is consistent with the surface segregation and <1ppm SIMS Na concentrations measured within the CIGS bulk of solar cell structures:
C.
Heske
,
D.
Eich
,
R.
Fink
,
E.
Umbach
,
T.
van Buuren
,
C.
Bostedt
,
S.
Kakar
,
L. J.
Terminello
,
M.
Grush
,
T. A.
Callcott
,
F. J.
Himpsel
,
D. L.
Ederer
,
R. C.C.
Perera
,
W.
Riedl
, and
F.
Karg
,
Surf. Interface Anal.
30
,
459
(
2000
).
13.
D. S.
Albin
,
J. J.
Carapella
,
J. R.
Tuttle
, and
R.
Noufi
,
Mater. Res. Soc. Symp. Proc.
228
,
267
(
1991
).
14.
J. E.
Jaffe
and
A.
Zunger
,
Phys. Rev. B
27
,
5176
(
1983
).
You do not currently have access to this content.