Single-crystal organic field-effect transistors (SX-OFETs) with channel lengths of 1 and 100μm have been fabricated by adhering thin crystals of tetracene to freshly ashed SiO2 substrates containing countersunk gold contacts. The intrinsic transport properties of the tetracene single crystals, corrected for potential contact effects by using a standard four-probe configuration, have been measured from room temperature down to 4.2K. These OFETs exhibit mobilities as high as 0.1cm2V1s1, subthreshold swings of <500mVdecade, and IonIoff ratios in excess of 109. The larger devices (L=100μm,W=1000μm) show thermally activated mobilities over the temperature range 200K<T<300K, but thermally induced cracks in the crystal prevent this analysis from being extended to lower temperatures. The smaller devices have a greater probability of surviving to low temperatures without a crack permeating the active channel, and representative devices have been investigated over the full range 4.2K<T<300K. The transport mechanism in these smaller devices can be varied from thermally activated to nearly temperature invariant by the application of drain fields >105Vcm.

1.
P. F.
Baude
,
D. A.
Ender
,
M. A.
Haase
,
T. W.
Kelley
,
D. V.
Muyres
, and
S. D.
Theiss
,
Appl. Phys. Lett.
82
,
3964
(
2003
).
2.
S. F.
Nelson
,
Y. Y.
Lin
,
D. J.
Gundlach
, and
T. N.
Jackson
,
Appl. Phys. Lett.
72
,
1854
(
1998
).
3.
N.
Karl
,
J.
Marktanner
,
R.
Stehle
, and
W.
Warta
,
Synth. Met.
42
,
2473
(
1991
).
4.
W.
Warta
,
R.
Stehle
, and
N.
Karl
,
Appl. Phys. A: Solids Surf.
A36
,
163
(
1985
).
5.
V.
Podzorov
,
S. E.
Sysoev
,
E.
Loginova
,
V. M.
Pudalov
, and
M. E.
Gershenson
,
Appl. Phys. Lett.
83
,
3504
(
2003
).
6.
C. C.
Mattheus
,
A. B.
Dros
,
J.
Baas
,
G. T.
Oostergetel
,
A.
Meetsma
,
J. L.
de Boer
, and
T. T. M.
Palstra
,
Synth. Met.
138
(
3
),
475
(
2003
).
7.
R. W. I.
de Boer
,
M.
Jochemsen
,
T. M.
Klapwijk
,
A. F.
Morpurgo
,
J.
Niemax
,
A. K.
Tripathi
, and
J.
Pflaum
,
J. Appl. Phys.
95
,
1196
(
2004
).
8.
R. W. I.
de Boer
,
T. M.
Klapwijk
, and
A. F.
Morpurgo
,
Appl. Phys. Lett.
83
,
4345
(
2003
).
9.
J.
Takeya
,
C.
Goldmann
,
S.
Haas
,
K. P.
Pernstich
,
B.
Ketterer
, and
B.
Batlogg
,
J. Appl. Phys.
94
,
5800
(
2004
).
10.
V. C.
Sundar
,
J.
Zaumseil
,
V.
Podzorov
,
E.
Menard
,
R. L.
Willett
,
T.
Someya
,
M. E.
Gershenson
, and
J. A.
Rogers
,
Science
303
,
1644
(
2004
).
11.
V. Y.
Butko
,
X.
Chi
, and
A. P.
Ramirez
,
Appl. Phys. Lett.
82
,
1739
(
2003
).
12.
V. Y.
Butko
,
X.
Chi
,
D. V.
Lang
, and
A. P.
Ramirez
,
Appl. Phys. Lett.
83
,
4773
(
2003
).
13.
V.
Podzorov
,
V. M.
Pudalov
, and
M. E.
Gershenson
,
Appl. Phys. Lett.
82
,
1739
(
2003
).
14.
R. A.
Laudise
,
C.
Kloc
,
P. G.
Simpkins
, and
T.
Siegrist
,
J. Cryst. Growth
187
,
449
(
1998
).
15.
J. A.
Merlo
and
C. D.
Frisbie
,
J. Polym. Sci., Part B: Polym. Phys.
41
,
2674
(
2003
).
16.
C.-Y.
Chen
and
J.
Kanicki
,
Solid-State Electron.
42
,
705
(
1998
).
17.
D. J.
Gundlach
,
J. A.
Nichols
,
L.
Zhou
, and
T. N.
Jackson
,
Appl. Phys. Lett.
80
,
2925
(
2002
).
18.
I.
Kymissis
,
C. D.
Dimitrakopoulos
, and
S.
Purushothaman
,
IEEE Trans. Electron Devices
48
,
1060
(
2001
).
19.
A. I.
Ryzhenkov
,
V. M.
Kozhin
, and
R. M.
Myasnikova
,
Kristallografiya
13
,
1028
(
1968
).
20.
U.
Sondermann
,
A.
Kutoglu
, and
H.
Bassler
,
J. Phys. Chem.
89
,
1735
(
1985
).
21.
D.
Knipp
,
R. A.
Street
, and
A. R.
Volkel
,
Appl. Phys. Lett.
82
,
3907
(
2003
).
22.
K. C.
Kao
and
W.
Hwang
,
Electrical Transport in Solids
, 1st ed. (
Pergamon
, Oxford,
1981
).
23.
N.
Karl
,
Festkoerperprobleme
14
,
261
(
1974
).
24.
You do not currently have access to this content.