This letter develops a method that is able to optimize the grating pivot position to obtain maximum continuous tuning range for a Littrow laser, and also verifies the method by implementation of a single-chip integrated laser using the microelectromechanical systems (MEMS) technology. The laser consists of a semiconductor gain chip, a microlens, and a MEMS blazed grating arranged in the Littrow configuration. The laser is integrated onto a single silicon chip while maintaining the ability of continuous tuning in a large range. It has a compact size of 2.0mm×1.5mm×0.6mm, and has obtained a tuning range of 30.3nm with a resolution of 0.03nmV2, a maximum power of 0.4dBm and a side mode suppression ratio of 26dB. Other merits include fast tuning speed, improved mechanical/wavelength stability, batch fabrication, and low cost.

1.
J. W.
Crowe
and
R. M.
Craig
, Jr.
,
Appl. Phys. Lett.
5
,
72
(
1964
).
2.
B. H.
Soffer
and
B. B.
McFarland
,
Appl. Phys. Lett.
10
,
266
(
1967
).
3.
K.
Liu
and
M. G.
Littman
,
Opt. Lett.
6
,
117
(
1981
).
4.
F.
Favre
and
D.
Le Guen
,
Electron. Lett.
27
,
183
(
1991
).
5.
W. R.
Trutna
, Jr.
and
L. F.
Stokes
,
J. Lightwave Technol.
11
,
1279
(
1993
).
6.
D.
Anthon
,
J. D.
Berger
,
J.
Drake
,
J.
Grade
,
S.
Hrinya
,
F.
Ilkov
,
H.
Jerman
,
D.
King
,
H.
Lee
,
A.
Tselikov
, and
K.
Yasumura
, OFC2002, Anaheim, CA,
2002
, paper Tu07.
7.
A.
Lohmann
and
R. R. A.
Syms
,
IEEE Photonics Technol. Lett.
15
,
120
(
2003
).
8.
Y.
Uenishi
,
K.
Honma
, and
S.
Nagaoka
,
Electron. Lett.
32
,
1207
(
1996
).
9.
A. Q.
Liu
,
X. M.
Zhang
,
V. M.
Murukeshan
, and
Y. L.
Lam
,
IEEE Photonics Technol. Lett.
13
,
427
(
2001
).
10.
X. M.
Zhang
,
A. Q.
Liu
,
D. Y.
Tang
, and
C.
Lu
,
Appl. Phys. Lett.
84
,
329
(
2004
).
11.
I. P.
Kaminow
,
G.
Eisenstein
, and
L. W.
Stulz
,
IEEE J. Quantum Electron.
QE-19
,
493
(
1983
).
You do not currently have access to this content.