In situ electromigration experiments were carried out to study electromigration-induced failure in the upper and lower layers in dual-damascene Cu test structures. The observations revealed electromigration-induced void movement along the Cu/dielectric cap interface. It supports the premise that CuSi3N4 interface acts as the dominant electromigration path. However, the observed void nucleation occurs in the CuSi3N4 interface at locations which are far from the cathode, and void movement along the CuSi3N4 interface in opposite direction of electron flow eventually causes void agglomeration at the via in the cathode end. The different electromigration behaviors of the upper and lower layer dual-damascene structures are discussed.

1.
E. T.
Ogawa
,
K. D.
Lee
,
V. A.
Blaschke
, and
P. S.
Ho
,
IEEE Trans. Reliab.
51
,
403
(
2002
).
2.
S.
Yokogawa
,
N.
Okada
,
Y.
Kakuhara
, and
H.
Takizawa
,
Microelectron. Reliab.
41
,
1409
(
2001
).
3.
F.
Wei
,
C. L.
Gan
,
C. V.
Thompson
,
J. J.
Clement
,
S. P.
Hau-Riege
,
K. L.
Pey
,
W. K.
Choi
,
H. L.
Tay
,
B.
Yu
, and
M. K.
Radhakrishnan
,
Mater. Res. Soc. Symp. Proc.
716
,
B13
3
(
2002
).
4.
S. P.
Hau-Riege
,
Appl. Phys. Lett.
91
,
2014
(
2002
).
5.
G. L.
Gan
,
F.
Wei
,
C. V.
Thompson
,
K. L.
Pey
,
W. K.
Choi
,
S. P.
Hau-Reige
, and
B.
Yu
,
Proceedings of the IEEE IPFA Conference
2002
, p.
124
.
6.
A. H.
Fischer
,
A.
von Glasow
,
S.
Penka
, and
F.
Ungar
,
Proceedings of the IEEE International Interconnect Technology Conference
,
2002
, p.
139
.
7.
R.
Rosenberg
,
D. C.
Edelstein
,
C.-K.
Hu
, and
K. P.
Rodbell
,
Annu. Rev. Mater. Sci.
30
,
229
(
2000
).
8.
C-K.
Hu
,
L.
Giganac
,
S. G.
Malhotra
,
R.
Rosenberg
, and
S.
Boettcher
,
Appl. Phys. Lett.
78
,
904
(
2001
).
9.
C. K.
Hu
,
R.
Rosenberg
,
H. S.
Rathore
,
D. B.
Nguyen
,
B.
Agarwala
,
Proceedings of the IEEE International Interconnect Technology Conference
,
1999
, p.
267
.
10.
E.
Zschech
,
H.
Geisler
,
I.
Zienert
,
H.
Prinz
,
E.
Langer
,
A. M.
Meyer
, and
G.
Schneider
,
Proceedings of the Advanced Metallization Conference
,
2002
, p.
305
.
11.
O. V.
Kononenko
,
V. N.
Matveev
,
Y. I.
Koval
,
S. V.
Dubonos
, and
V. T.
Volkov
,
Mater. Res. Soc. Symp. Proc.
427
,
127
(
1996
).
12.
R.
Gonella
,
Microelectron. Eng.
55
,
245
(
2001
).
13.
E.
Glickman
and
M.
Nathan
,
J. Appl. Phys.
80
,
3782
(
1996
).
14.
H.
Sato
and
S.
Ogawa
,
Proceedings of IEEE International Interconnect Technology Conference
,
2001
, p.
186
.
15.
P.
Besser
,
A.
Marathe
,
L.
Zhao
,
M.
Herrick
,
C.
Capasso
, and
H.
Kawasaki
,
Tech. Dig. - Int. Electron Devices Meet.
2000
,
119
.
16.
C. L.
Gan
,
C. V.
Thompson
,
K. L.
Pey
,
W. K.
Choi
,
H. L.
Tay
,
B.
Yu
, and
M. K.
Radhakrishnan
,
Appl. Phys. Lett.
79
,
4592
(
2001
).
17.
A. V.
Vairagar
,
S. G.
Mhaisalkar
, and
A.
Krishnamoorthy
,
Microelectron. Reliab.
44
,
747
(
2004
).
18.
M. A.
Meyer
,
E.
Langer
, and
E.
Zschech
,
Microelectron. Eng.
64
,
375
(
2002
).
19.
K. N.
Tu
,
C. C.
Yeh
,
C. Y.
Liu
, and
C.
Chih
,
Appl. Phys. Lett.
76
,
988
(
2000
).
20.
K. S.
Low
,
H.
Poetzlberger
, and
A.
O’Neill
,
Mater. Res. Soc. Symp. Proc.
563
,
133
(
1999
).
21.
E. C. C.
Yeh
and
K. N.
Tu
,
J. Appl. Phys.
89
,
3203
(
2001
).
22.
P. S.
Ho
,
J. Appl. Phys.
41
,
64
(
1970
).
23.
H.
Boularot
and
R. M.
Bradley
,
J. Appl. Phys.
80
,
756
(
1996
).
24.
K. M.
Crosby
,
R. M.
Bradley
, and
H.
Boularot
,
Phys. Rev. B
56
,
8743
(
1997
).
25.
L.
Xia
,
A. F.
Bowers
,
Z.
Suo
, and
C. F.
Shih
,
J. Mech. Phys. Solids
45
,
1473
(
1997
).
You do not currently have access to this content.