Amorphous LaAlO3 thin films have been deposited by molecular beam deposition directly on silicon without detectable oxidation of the underlying substrate. We have studied these abrupt interfaces by Auger electron spectroscopy, high-resolution transmission electron microscopy, medium-energy ion scattering, transmission infrared absorption spectroscopy, and x-ray photoelectron spectroscopy. Together these techniques indicate that the films are fully oxidized and have less than 0.2 Å of SiO2 at the interface between the amorphous LaAlO3 and silicon. These heterostructures are being investigated for alternative gate dielectric applications and provide an opportunity to control the interface between the silicon and the gate dielectric.

1.
D. A.
Muller
,
T.
Sorsch
,
S.
Moccio
,
F. H.
Baumann
,
K.
Evans-Lutterodt
, and
G.
Timp
,
Nature (London)
399
,
758
(
1999
).
2.
C. A. Billman, P. H. Tan, K. J. Hubbard, and D. G. Schlom, in UltrathinSiO2and High-K Materials for ULSI Gate Dielectrics, edited by H. R. Huff, C. A. Richter, M. L. Green, G. Lucovsky, and T. Hattori (Materials Research Society, Warrendale, PA, 1999), Vol. 567, pp. 409–414.
3.
A. I.
Kingon
,
J.-P.
Maria
, and
S. K.
Streiffer
,
Nature (London)
406
,
1032
(
2000
).
4.
D. G.
Schlom
and
J. H.
Haeni
,
MRS Bull.
27
,
198
(
2002
).
5.
B.-E.
Park
and
H.
Ishiwara
,
Appl. Phys. Lett.
79
,
806
(
2001
).
6.
B.-E.
Park
and
H.
Ishiwara
,
Appl. Phys. Lett.
82
,
1197
(
2003
).
7.
X.-B.
Lu
,
Z.-G.
Liu
,
Y.-P.
Wang
,
Y.
Yang
,
X.-P.
Wang
,
H.-W.
Zhou
, and
B.-Y.
Nguyen
,
J. Appl. Phys.
94
,
1229
(
2003
).
8.
L. F.
Edge
,
D. G.
Schlom
,
S. A.
Chambers
,
E.
Cicerrella
,
J. L.
Freeouf
,
B.
Holländer
, and
J.
Schubert
,
Appl. Phys. Lett.
84
,
726
(
2004
).
9.
S. Stemmer and D. G. Schlom, in Nano and Giga Challenges in Microelectronics, edited by J. Greer, A. Korkin, and J. Labanowski (Elsevier, Amsterdam, 2003), pp. 129–150.
10.
International Technology Roadmap for Semiconductors: 2003 (Semiconductor Industry Association, San Jose, CA, 2003).
11.
S.
Guha
,
E.
Cartier
,
M. A.
Gribelyuk
,
N. A.
Bojarczuk
, and
M. C.
Copel
,
Appl. Phys. Lett.
77
,
2710
(
2000
).
12.
G. D.
Wilk
and
R. M.
Wallace
,
Appl. Phys. Lett.
76
,
112
(
2000
).
13.
J.
Kwo
,
M.
Hong
,
A. R.
Kortan
,
K. L.
Queeney
,
Y. J.
Chabal
,
R. L.
Opila
,
D. A.
Muller
,
S. N. G.
Chu
,
B. J.
Sapjeta
,
T. S.
Lay
,
J. P.
Mannaerts
,
T.
Boone
,
H. W.
Krautter
,
J. J.
Krajewski
,
A. M.
Seregent
, and
J. M.
Rosamilia
,
J. Appl. Phys.
89
,
3920
(
2001
).
14.
S.
Stemmer
,
D. O.
Klenov
,
Z.
Chen
,
D.
Niu
,
R. W.
Ashcraft
, and
G. N.
Parsons
,
Appl. Phys. Lett.
81
,
712
(
2002
).
15.
W.
Tsai
,
R. J.
Carter
,
H.
Nohira
,
M.
Caymax
,
T.
Conard
,
V.
Cosnier
,
S.
DeGendt
,
M.
Heyns
,
J.
Petry
,
O.
Richard
,
W.
Vandervorst
,
E.
Young
,
C.
Zhao
,
J.
Maes
,
M.
Tuominen
,
W. H.
Schulte
,
E.
Garfunkel
, and
T.
Gustafsson
,
Microelectron. Eng.
65
,
259
(
2003
).
16.
J.
Kwo
,
M.
Hong
,
B.
Busch
,
D. A.
Muller
,
Y. J.
Chabal
,
A. R.
Kortan
,
J. P.
Mannaerts
,
B.
Yang
,
P.
Ye
,
H.
Gossmann
,
A. M.
Sergent
,
K. K.
Ng
,
J.
Bude
,
W. H.
Schulte
,
E.
Garfunkel
, and
T.
Gustafsson
,
J. Cryst. Growth
251
,
645
(
2003
).
17.
M.
Ritala
,
K.
Kukli
,
A.
Rahtu
,
P. I.
Räisänen
,
M.
Leskelä
,
T.
Sajavaara
, and
J.
Keinonen
,
Science
288
,
319
(
2000
).
18.
E. P.
Gusev
,
M.
Copel
,
E.
Cartier
,
I. J. R.
Baumvol
,
C.
Krug
, and
M. A.
Gribelyuk
,
Appl. Phys. Lett.
76
,
176
(
2000
).
19.
S.
Guha
,
E.
Cartier
,
N. A.
Bojarczuk
,
J.
Bruley
,
L.
Gignac
, and
J.
Karasinski
,
J. Appl. Phys.
90
,
512
(
2001
).
20.
S. J.
Wang
,
C. K.
Ong
,
S. Y.
Xu
,
P.
Chen
,
W. C.
Tjiu
,
J. W.
Chai
,
A. C. H.
Huan
,
W. J.
Yoo
,
J. S.
Lim
,
W.
Feng
, and
W. K.
Choi
,
Appl. Phys. Lett.
78
,
1604
(
2001
).
21.
S. J.
Wang
and
C. K.
Ong
,
Appl. Phys. Lett.
80
,
2541
(
2002
).
22.
H.
Li
,
X.
Hu
,
Y.
Wei
,
Z.
Yu
,
X.
Zhang
,
R.
Droopad
,
A. A.
Demkov
,
J.
Edwards
,
K.
Moore
,
W.
Ooms
,
J.
Kulik
, and
P.
Fejes
,
J. Appl. Phys.
93
,
4521
(
2003
).
23.
J. Y.
Dai
,
P. F.
Lee
,
K. H.
Wong
,
H. L. W.
Chen
, and
C. L.
Choy
,
J. Appl. Phys.
94
,
912
(
2003
).
24.
L.
Yan
,
H. B.
Lu
,
G. T.
Tan
,
F.
Chen
,
Y. L.
Zhou
,
G. Z.
Yang
,
W.
Liu
, and
Z. H.
Chen
,
Appl. Phys. A: Mater. Sci. Process.
77
,
721
(
2003
).
25.
L. F. Edge and D. G. Schlom (unpublished).
26.
The nominal film thicknesses given were calculated from the fluxes of the molecular beams (measured by a quartz crystal microbalance) assuming the amorphous LaAlO3 films had the density of crystalline LaAlO3. The areal density (atoms/cm2) of lanthanum and aluminum in the films was confirmed by RBS. The thicknesses of the amorphous LaAlO3 films were also measured by x-ray reflectivity and show 1.5–2 times the thicknesses determined assuming the density of crystalline LaAlO3. These differences will be discussed elsewhere.
27.
J.
Lettieri
,
J. H.
Haeni
, and
D. G.
Schlom
,
J. Vac. Sci. Technol. A
20
,
1332
(
2002
).
28.
B. B.
Stefanov
,
A. G.
Gurevich
,
M. K.
Weldon
,
K.
Raghavachari
, and
Y. J.
Chabal
,
Phys. Rev. Lett.
81
,
3908
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.