We describe the application of nanoelectromechanical systems (NEMS) to ultrasensitive mass detection. In these experiments, a modulated flux of atoms was adsorbed upon the surface of a 32.8 MHz NEMS resonator within an ultrahigh-vacuum environment. The mass-induced resonance frequency shifts by these adsorbates were then measured to ascertain a mass sensitivity of 2.53×10−18 g. In these initial measurements, this sensitivity is limited by the noise in the NEMS displacement transducer; the ultimate limits of the technique are set by fundamental phase noise processes. Our results and analysis indicate that mass sensing of individual molecules will be realizable with optimized NEMS devices.

1.
M. L.
Roukes
,
Phys. World
14
,
25
(
2001
).
2.
C. Lu, Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier, London, 1984).
3.
S. S.
Narine
and
A. J.
Slavin
,
J. Vac. Sci. Technol. A
16
,
1857
(
1998
).
4.
M. Thompson and D. C. Stone, Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization (Wiley, New York, 1997).
5.
E. A.
Thundat
,
E. A.
Wachter
,
S. L.
Sharp
, and
R. J.
Warmack
,
Appl. Phys. Lett.
66
,
1695
(
1995
).
6.
B.
Ilic
,
D.
Czaplewski
,
H. G.
Craighead
,
P.
Neuzil
,
C.
Campagnolo
, and
C.
Batt
,
Appl. Phys. Lett.
77
,
450
(
2000
).
7.
T.
Ono
,
X.
Li
,
H.
Miyashita
, and
M.
Esashi
,
Rev. Sci. Instrum.
74
,
1240
(
2003
).
8.
N. V.
Lavrik
and
P. G.
Datskos
,
Appl. Phys. Lett.
82
,
2697
(
2003
).
9.
Attogram-scale mass sensing is described in M. L. Roukes, and K. L. Ekinci, U. S. Patent 6,722,200 (20 April 2004).
10.
A. N.
Cleland
and
M. L.
Roukes
,
Appl. Phys. Lett.
69
,
2653
(
1996
).
11.
K. L.
Ekinci
and
J. M.
Valles
, Jr.
,
Phys. Rev. B
58
,
7347
(
1998
).
12.
We assume uniform coverage of the Au atoms. Hence, we are measuring the change in the effective resonator mass, Meff. For the doubly clamped beam geometry employed, Meff=0.735Mtot, where Mtot is the total resonator mass (see later discussion in the text).
13.
K. L.
Ekinci
,
Y. T.
Yang
,
X. M.
Huang
, and
M. L.
Roukes
,
Appl. Phys. Lett.
81
,
2253
(
2002
).
14.
Following standard practice, the mass noise floor is defined as the added mass that will generate a frequency shift resolvable above the frequency noise floor, i.e., with signal-to-noise ratio∼1.
15.
T. S.
Tighe
,
J.
Worlock
, and
M. L.
Roukes
,
Appl. Phys. Lett.
70
,
2687
(
1997
).
16.
The thermalization rate between the electrons and the phonons is very short compared to any of the time scales in our experiments.
17.
W. P. Robins, Phase Noise in Signal Sources (Pelegrinus, London, 1982).
18.
K. L.
Ekinci
,
Y. T.
Yang
, and
M. L.
Roukes
,
J. Appl. Phys.
95
,
2682
(
2004
).
19.
There is no loss of generality in this approach. Following standard analysis, the electrical noise from the transducers and subsequent stages in the readout chain can be subsumed into an “effective” voltage noise at the transducer. The VCO separately contributes to the observed frequency noise, but its measured phase noise is negligible in this work.
20.
X. M. H.
Huang
,
C. A.
Zorman
,
M.
Mehregany
, and
M. L.
Roukes
,
Nature (London)
421
,
496
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.