We have found that the Brownian motion of nanoparticles at the molecular and nanoscale level is a key mechanism governing the thermal behavior of nanoparticle–fluid suspensions (“nanofluids”). We have devised a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we have discovered a fundamental difference between solid/solid composites and solid/liquid suspensions in size-dependent conductivity. This understanding could lead to design of nanoengineered next-generation coolants with industrial and biomedical applications in high-heat-flux cooling.

1.
J. A.
Eastman
,
S. U. S.
Choi
,
S.
Li
,
W.
Yu
, and
L. J.
Thompson
,
Appl. Phys. Lett.
78
,
718
(
2001
).
2.
S. U. S.
Choi
,
Z. G.
Zhang
,
W.
Yu
,
F. E.
Lockwood
, and
E. A.
Grulke
,
Appl. Phys. Lett.
79
,
2252
(
2001
).
3.
S. K.
Das
,
N.
Putra
,
P.
Thiesen
, and
W.
Roetzel
,
ASME Trans. J. Heat Transfer
125
,
567
(
2003
).
4.
H. E.
Patel
,
S. K.
Das
,
T.
Sundararajan
,
A. S.
Nair
,
B.
George
, and
T.
Pradeep
,
Appl. Phys. Lett.
83
,
2931
(
2003
).
5.
S. M.
You
,
J. H.
Kim
, and
K. H.
Kim
,
Appl. Phys. Lett.
83
,
3374
(
2003
).
6.
P.
Vassallo
,
R.
Kumar
, and
S.
D’Amico
,
Int. J. Heat Mass Transfer
47
,
407
(
2004
).
7.
J. C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, Oxford 1873).
8.
S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials (Elsevier Science, The Netherlands, 1993).
9.
A. Einstein, Investigation on the Theory of Brownian Movement (Dover, New York 1956).
10.
C. Kittel, Thermal Physics (Wiley, New York, 1969).
11.
P. L.
Kapitza
,
J. Phys. (Moscow)
4
,
181
(
1941
).
12.
P.
Keblinski
,
S. R.
Phillpot
,
S. U. S.
Choi
, and
J. A.
Eastman
,
Int. J. Heat Mass Transfer
45
,
855
(
2002
).
13.
F. M. White, Viscous Fluid Flow (McGraw–Hill, New York, 1991).
14.
S.
Tomitika
,
T.
Aoi
, and
H.
Yosinabu
,
Proc. R. Soc. London, Ser. A
129
,
233
(
1953
).
15.
C.-J.
Yu
,
A. G.
Richter
,
A.
Datta
,
M. K.
Durbin
, and
P.
Dutta
,
Phys. Rev. Lett.
82
,
2326
(
1999
).
16.
S.
Lee
,
U. S.
Choi
, and
J. A.
Eastman
,
ASME Trans. J. Heat Transfer
121
,
280
(
1999
).
17.
H.
Masuda
,
A.
Ebata
,
K.
Teramae
, and
N.
Hishinuma
,
Netsu Bussei
4
,
227
(
1993
).
18.
G.
Chen
,
ASME Trans. J. Heat Transfer
118
,
539
(
1996
).
19.
D. P. H.
Hasselman
,
K. Y.
Donaldson
, and
A. L.
Geiger
,
J. Am. Ceram. Soc.
75
,
3137
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.