We calculate the near-field optical spectra of excitons and biexcitons in semiconductor quantum dots naturally occurring at interface fluctuations in GaAs-based quantum wells, using a nonlocal description of the response function to a spatially modulated electromagnetic field. The relative intensity of the lowest, far-field forbidden excitonic states is predicted; the spatial extension of the ground biexciton state is found, in agreement with recently published experiments.
REFERENCES
1.
A.
Barenco
, D.
Deutsch
, A.
Ekert
, and R.
Josza
, Phys. Rev. Lett.
74
, 4083
(1995
).2.
F.
Troiani
, U.
Hohenester
, and E.
Molinari
, Phys. Rev. B
62
, 2263
(2000
).3.
E.
Biolatti
, R.
Iotti
, P.
Zanardi
, and F.
Rossi
, Phys. Rev. Lett.
85
, 5647
(2000
).4.
N. H.
Bondaeo
, J.
Erland
, D.
Gammon
, D.
Park
, D. S.
Katzer
, and D. G.
Steel
, Science
282
, 1473
(1998
).5.
6.
X.
Li
, Y.
Wu
, D.
Steel
, D.
Gammon
, T. H.
Stievater
, D. S.
Katzer
, D.
Park
, C.
Piermarocchi
, and L. J.
Sham
, Science
301
, 809
(2003
).7.
G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, 1989).
8.
J. R.
Guest
, T. H.
Stievater
, G.
Chen
, E. A.
Tabak
, B. G.
Orr
, D. G.
Steel
, D.
Gammon
, and D. S.
Katzer
, Science
293
, 2224
(2001
).9.
K.
Matsuda
, T.
Saiki
, S.
Nomura
, M.
Mihara
, and Y.
Aoyagi
, Appl. Phys. Lett.
81
, 2291
(2002
).10.
K. Matsuda, T. Saiki, S. Nomura, M. Mihara, and Y. Aoyagi, in Physics of Semiconductors 2002, edited by A. R. Long and J. H. Davies (Institute of Physics, Bristol, UK, 2002).
11.
K.
Matsuda
, T.
Saiki
, S.
Nomura
, M.
Mihara
, Y.
Aoyagi
, S.
Nair
, and T.
Takagahara
, Phys. Rev. Lett.
91
, 177401
(2003
).12.
13.
14.
15.
W. F.
Brinkman
, T. M.
Rice
, and B.
Bell
, Phys. Rev. B
8
, 1570
(1973
).16.
G.
Pistone
, S.
Savasta
, O.
Di Stefano
, and R.
Girlanda
, Phys. Rev. B
67
, 153305
(2003
).17.
With the material parameters of Ref. 19, we find energies of −8.686, −8.442, −8.128, and −8.043 meV for the exciton ground state and the first three excited exciton states, respectively, and −17.264 meV for the biexciton ground state; exciton (biexciton) energy zero is given by the energy of the two-dimensional exciton (biexciton) of the narrow quantum well (see Ref. 13).
Note that we are not attempting a quantitative comparison of the total exciton and biexciton energies because of the well-known problems regarding the underestimation of the biexciton binding for the trial wave function under consideration; for a discussion, see, e.g.,
O.
Heller
, Ph.
Lelong
, and G.
Bastard
, Phys. Rev. B
56
, 4702
(1997
).18.
O.
Mauritz
, G.
Goldoni
, F.
Rossi
, and E.
Molinari
, Phys. Rev. Lett.
82
, 847
(1999
);O.
Mauritz
, G.
Goldoni
, F.
Rossi
, and E.
Molinari
, Phys. Rev. B
62
, 8204
(2000
).19.
C.
Simserides
, U.
Hohenester
, G.
Goldoni
, and E.
Molinari
, Phys. Rev. B
62
, 13
657
(2000
).20.
U. Hohenester, G. Goldoni, and E. Molinari (unpublished).
21.
K. Matsuda (private communication).
This content is only available via PDF.
© 2004 American Institute of Physics.
2004
American Institute of Physics
You do not currently have access to this content.