This contribution describes an approach to fabricating high-efficiency hole-transport layers (HTLs) for polymer light-emitting diodes (PLEDs). HTLs fabricated by this approach have two components: a siloxane-derivatized, crosslinkable, hole-transporting material and a hole-transporting polymer. These HTLs exhibit high transparency, have no corrosive effects on the indium tin oxide anode, and have minimal pixel “cross-talk” potential. PLEDs that are fabricated using these HTLs exhibit superior performance (40% greater maximum current efficiency) versus analogous devices using a conventional poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) HTL. Most importantly, this approach has considerable flexibility and can be applied as a general strategy to manipulate energy level alignments in PLEDs.

1.
J. H.
Burroughes
,
D. D. C.
Bradley
,
A. R.
Brown
,
R. N.
Marks
,
K.
Mackay
,
R. H.
Friend
,
P. L.
Burns
, and
A. B.
Holmes
,
Nature (London)
347
,
539
(
1990
).
2.
A.
Elschner
,
F.
Bruder
,
H. W.
Heuer
,
F.
Jonas
,
A.
Karbach
,
S.
Kirchmeyer
, and
S.
Thurm
,
Synth. Met.
111
,
139
(
2000
).
3.
Y.
Cao
,
G.
Yu
,
C.
Zhang
,
R.
Menon
, and
A. J.
Heeger
,
Synth. Met.
87
,
171
(
1997
).
4.
T. M.
Brown
,
J. S.
Kim
,
R. H.
Friend
,
F.
Cacialli
,
R.
Daik
, and
W. J.
Feast
,
Appl. Phys. Lett.
75
,
1679
(
1999
).
5.
Y.
Yang
and
A. H.
Heeger
,
Appl. Phys. Lett.
64
,
1245
(
1994
).
6.
S. A.
Carter
,
M.
Angelopoulos
,
S.
Karg
,
P. J.
Brock
, and
J. C.
Scott
,
Appl. Phys. Lett.
70
,
2067
(
1997
).
7.
J.
Gao
,
A. J.
Heeger
,
J. Y.
Lee
, and
C. Y.
Kim
,
Synth. Met.
82
,
221
(
1996
).
8.
M. P.
de Jong
,
L. J.
van IJzendoorn
, and
M. J. A.
de Voigt
,
Appl. Phys. Lett.
77
,
2255
(
2000
).
9.
K. W.
Wong
,
H. L.
Yip
,
Y.
Luo
,
K. Y.
Wong
,
W. M.
Lau
,
K. H.
Low
,
H. F.
Chow
,
Z. Q.
Gao
,
W. L.
Yeung
, and
C. C.
Chang
,
Appl. Phys. Lett.
80
,
2788
(
2002
).
10.
J.
Cui
,
Q.
Huang
,
J. G. C.
Veinot
,
H.
Yan
, and
T.
Marks
,
Adv. Mater. (Weinheim, Ger.)
14
,
565
(
2002
).
11.
H.
Yan
,
Q. L.
Huang
,
J.
Cui
,
J. G. C.
Veinot
,
M. M.
Kern
, and
T. J.
Marks
,
Adv. Mater. (Weinheim, Ger.)
15
,
835
(
2003
).
12.
M.
Redecker
,
D. D. C.
Bradley
,
M.
Inbasekaran
,
W. W.
Wu
, and
E. P.
Woo
,
Adv. Mater. (Weinheim, Ger.)
11
,
241
(
1999
).
13.
J. S.
Kim
,
P. K. H.
Ho
,
C. E.
Murphy
,
N.
Baynes
, and
R. H.
Friend
,
Adv. Mater. (Weinheim, Ger.)
14
,
206
(
2002
).
14.
S.
Cina
,
N.
Baynes
,
E.
Moons
,
R. H.
Friend
,
J. H.
Burroughes
,
C.
Towns
,
K.
Heeks
,
R.
O’Dell
,
S.
O’Connor
, and
N.
Athanassopoulou
,
Proc. SPIE
4279
,
221
(
2001
).
15.
W.
Li
,
Q.
Wang
,
J.
Cui
,
H.
Chou
,
T. J.
Marks
,
G. E.
Jabbour
,
S. E.
Shaheen
,
B.
Kippelen
,
N.
Pegyhambarian
,
P.
Dutta
,
A. J.
Richter
,
J.
Anderson
,
P.
Lee
, and
N.
Armstrong
,
Adv. Mater. (Weinheim, Ger.)
11
,
730
(
1999
).
16.
X.
Gong
,
D.
Moses
,
A. J.
Heeger
,
S.
Liu
, and
A. K. Y.
Jen
,
Appl. Phys. Lett.
83
,
183
(
2003
).
17.
J. S.
Kim
,
R. H.
Friend
, and
F.
Cacialli
,
Appl. Phys. Lett.
74
,
3084
(
1999
).
18.
I.
Parker
,
J. Appl. Phys.
75
,
1656
(
1994
).
19.
R. H. Friend, Material Research Society Fall Meeting, Boston, MA, December 2002, Lecture B4.6.
This content is only available via PDF.
You do not currently have access to this content.