We report on the microwave response properties of the ZnO nanowire-polyester composites fabricated into a planar plate with the area of 180×180 mm2 and the thickness of about 1 mm. Strong microwave absorption has been observed in X band and the maximum absorption is enhanced as the concentration of the nanowires increases in the composites. Both the low complex permittivity and the low dissipation of the pure nanowires demonstrate the pure nanowires are low-loss materials for microwave absorption in X band. The strong absorption is related to interfacial multipoles at the interface between the polyester and the ZnO nanowires, a high surface-to-volume ratio and a similar shape of the nanowires to antenna.

1.
A.
Wadhawan
,
D.
Garrett
, and
J. M.
Perez
,
Appl. Phys. Lett.
83
,
2683
(
2003
).
2.
P. C. P.
Watts
,
D. R.
Ponnampalam
,
W. K.
Hsu
,
A.
Barnes
, and
B.
Chambers
,
Chem. Phys. Lett.
378
,
609
(
2003
).
3.
C. A.
Grimes
,
C.
Mungle
,
D.
Kouzouids
,
S.
Fang
, and
P. C.
Eklund
,
Chem. Phys. Lett.
319
,
460
(
2003
).
4.
T. J.
Imholt
,
C. A.
Dyke
,
B.
Hasslacher
,
J. M.
Perez
,
D. W.
Price
,
J. A.
Roberts
,
J. B.
Scott
,
A.
Wadhawan
,
Z.
Ye
, and
J. M.
Tour
,
Chem. Mater.
15
,
3969
(
2003
).
5.
M. H.
Huang
,
S.
Mao
,
H.
Feick
,
H. Q.
Yan
,
Y. Y.
Wu
,
H.
Kind
,
E.
Weber
,
R.
Russo
, and
P. D.
Yang
,
Science
292
,
1897
(
2001
).
6.
M. H.
Huang
,
Y. Y.
Wu
,
H.
Feick
,
N.
Tran
,
E.
Weber
, and
P. D.
Yang
,
Adv. Mater. (Weinheim, Ger.)
13
,
113
(
2001
).
7.
X. F.
Duan
and
C. M.
Lieber
,
Adv. Mater. (Weinheim, Ger.)
12
,
298
(
2000
).
8.
Y.
Li
,
G. W.
Meng
, and
L. D.
Zhang
, and
F.
Phillipp
,
Appl. Phys. Lett.
76
,
2011
(
2000
).
9.
R.
Konenkamp
,
K.
Boedecker
,
M. C.
Lux-Steiner
,
M.
Poschenrieder
,
F.
Zenia
,
C. L.
Clement
, and
S.
Wagner
,
Appl. Phys. Lett.
77
,
2575
(
2000
).
10.
Y. C.
Kong
,
D. P.
Yu
,
B.
Zhang
,
W.
Fang
, and
S. Q.
Feng
,
Appl. Phys. Lett.
78
,
407
(
2001
).
11.
J. Q.
Hu
,
Q.
Li
,
N. B.
Wong
,
C. S.
Lee
, and
S. T.
Lee
,
Chem. Mater.
14
,
1216
(
2002
).
12.
W. I.
Park
,
D. H.
Kim
,
S.-W.
Jung
, and
G.-C.
Yi
,
Appl. Phys. Lett.
80
,
4232
(
2002
).
13.
B. D.
Yao
,
Y. F.
Chan
, and
N.
Wang
,
Appl. Phys. Lett.
81
,
757
(
2002
).
14.
Q.
Wan
,
K.
Yu
,
T. H.
Wang
, and
C. L.
Lin
,
Appl. Phys. Lett.
83
,
2253
(
2003
).
15.
A.
Salomon
,
D.
Berkovich
, and
D.
Chahen
,
Appl. Phys. Lett.
82
,
1051
(
2003
).
16.
M. Z.
Wu
,
H. H.
He
,
Z. S.
Zhao
, and
X.
Yao
,
J. Phys. D
33
,
2398
(
2000
).
17.
P.
Singh
,
V. K.
Puri
, and
T. C.
Goel
,
J. Appl. Phys.
87
,
4362
(
2000
).
18.
A. P.
Ramirez
,
R. C.
Haddon
,
O.
Zhou
,
R. M.
Fleming
,
J.
Zhang
,
S. M.
McClure
, and
R. E.
Smalley
,
Science
265
,
84
(
1994
).
19.
E.
Comini
,
G.
Faglia
, and
G.
Sbereglieri
,
Appl. Phys. Lett.
81
,
1869
(
2002
).
20.
A.
Khanna
,
R.
Kumar
, and
S. S.
Bhatti
,
Appl. Phys. Lett.
82
,
4388
(
2003
).
21.
H.
Bosman
,
Y. Y.
Lau
, and
R. M.
Gilgenbach
,
Appl. Phys. Lett.
82
,
1353
(
2003
).
22.
C. G.
Koops
,
Phys. Rev.
83
,
121
(
1951
).
23.
S.
Ruan
,
B.
Xu
,
H.
Suo
,
F.
Wu
,
S.
Xiang
, and
M.
Zhao
,
J. Magn. Magn. Mater.
212
,
175
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.