Subpicosecond time-resolved differential transmission spectroscopy has been used to investigate the carrier density and temperature dependence of the quantum well electron capture time of blue-emitting InGaN/GaN multiple quantum well structures. It is found that the capture time varies significantly with both temperature and carrier density, the latter effect being consistent with carrier-induced band bending or increased carrier–carrier scattering. At room temperature, the electron capture time is in the range 0.4–0.8 ps for carrier densities ⩽5×1018cm−3.

1.
S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story, 2nd ed. (Springer, Berlin, 2000).
2.
J.-Y. Duboz and J.-C. Garcia, in: Low-Dimensional Nitride Semiconductors, edited by B. Gil, Series on Semiconductor Science and Technology Vol. 9 (Oxford University Press, Oxford, 2002), Chap. 1.
3.
N. S.
Mansour
,
K. W.
Kim
, and
M. A.
Littlejohn
,
J. Appl. Phys.
77
,
2834
(
1995
).
4.
J.
Wang
,
K. W.
Kim
, and
M. A.
Littlejohn
,
Appl. Phys. Lett.
71
,
820
(
1997
).
5.
N. A.
Zakhleniuk
,
C. R.
Bennett
,
V. N.
Stavrou
,
M.
Babiker
, and
B. K.
Ridley
,
Phys. Status Solidi A
176
,
79
(
1999
).
6.
Ü.
Özgür
,
M. J.
Bergmann
,
H. C.
Casey
, Jr.
,
H. O.
Everitt
,
A. C.
Abare
,
S.
Keller
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
77
,
109
(
2000
).
7.
Ü.
Özgür
,
H. O.
Everitt
,
S.
Keller
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
82
,
1416
(
2003
).
8.
The efficient capture of carriers excited above the GaN barriers compared to Ref. 6 is related to the thin capping layers used in our samples. The same difference between PLE spectra for thin and thick capping layers has been observed by other authors.
See, for example, S. F. Chichibu, Y. Kawakami, and T. Sota in Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, edited by S. Nakamura and S. G. Chichibu (Taylor and Francis, London, 2000), pp. 153–270.
9.
Y.
Kawakami
,
Y.
Narukawa
,
K.
Omae
,
S.
Fujita
, and
S.
Nakamura
,
Appl. Phys. Lett.
77
,
2151
(
2000
).
10.
X. Q.
Shen
,
M.
Shimizu
,
H.
Okumura
, and
F.
Sasaki
,
Appl. Phys. Lett.
79
,
1599
(
2001
).
11.
J. F.
Muth
,
J. H.
Lee
,
I. K.
Shmagin
,
R. M.
Kolbas
,
H. C.
Casey
, Jr.
,
B. P.
Keller
,
U. K.
Mishra
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
71
,
2572
(
1997
).
12.
K. T.
Tsen
,
D. K.
Ferry
,
A.
Botchkarev
,
B.
Sverdlov
,
A.
Salvador
, and
H.
Morkoç
,
Appl. Phys. Lett.
71
,
1852
(
1997
).
13.
A.
Hori
,
D.
Yasunaga
,
A.
Satake
, and
K.
Fujiwara
,
Appl. Phys. Lett.
79
,
3723
(
2001
).
14.
A.
Hori
,
D.
Yasunaga
,
A.
Satake
, and
K.
Fujiwara
,
J. Appl. Phys.
93
,
3152
(
2003
).
15.
X. A.
Cao
,
S. F.
LeBoeuf
,
L. B.
Rowland
,
C. H.
Yan
, and
H.
Liu
,
Appl. Phys. Lett.
82
,
3614
(
2003
).
16.
F.
Binet
,
J. Y.
Duboz
,
C.
Grattepain
,
F.
Scholz
, and
J.
Off
,
Mater. Sci. Eng., B
59
,
323
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.