We report on time-resolved spectroscopy from the ultraviolet to mid-infrared spectrum of low-frequency collective excitations: dispersion and anisotropy of amplitude mode and phase mode in quasi-one-dimensional charge-density wave conductors, and Our results show that the time-resolved optical technique provides momentum resolution of collective modes.
REFERENCES
1.
See, e.g., Charge Density Waves in Solids, edited by L. P. Gor’kov and G. Gruner (North Holland, Amsterdam, 1989);
Density Waves in Solids, edited by G. Grüner (Addison-Wesley, Reading, MA, 1994).
2.
D.
Mihailovic
, D.
Dvorsek
, V. V.
Kabanov
, J.
Demsar
, L.
Forro
, and H.
Berger
, Appl. Phys. Lett.
80
, 871
(2002
).3.
E.
Beaurepaire
, J.-C.
Merle
, A.
Daunois
, and J.-Y.
Bigot
, Phys. Rev. Lett.
76
, 4250
(1983
).4.
B.
Koopmans
, M.
van Kampen
, J. T.
Kohlhepp
, and W. J. M.
de Jonge
, Phys. Rev. Lett.
85
, 844
(2000
).5.
R. A.
Kaindl
, M.
Woerner
, T.
Elsaesser
, D. C.
Smith
, J. F.
Ryan
, G. A.
Farnan
, M. P.
McCurry
, and D. G.
Walmsley
, Science
287
, 470
(2000
).6.
T.
Kise
, T.
Ogasawara
, M.
Ashida
, Y.
Tomioka
, Y.
Tokura
, and M.
Kuwata-Gonokami
, Phys. Rev. Lett.
85
, 1986
(2000
).7.
J.
Demsar
, K.
Biljakovic
, and D.
Mihailovic
, Phys. Rev. Lett.
83
, 800
(1999
).8.
A. A.
Tsvetkov
, D. M.
Sagar
, P. H. M.
van Loosdrecht
, D.
van der Marel D
, and S.
van Smaalen
, Acta Phys. Pol. B
34
, 387
(2003
).9.
B.
Zawilski
, J.
Richard
, and J.
Marcus
, Solid State Commun.
109
, 41
(1999
).10.
See, e.g., Femtosecond Laser Pulses: Principles and Experiments, edited by C. Rullière (Springer, New York, 1998).
11.
G.
Travaglini
, I.
Morke
, and P.
Wachter
, Solid State Commun.
45
, 289
(1983
).12.
J. P.
Pouget
, B.
Hennion
, C.
Escribe-Filippini
, and M.
Sato
, Phys. Rev. B
43
, 8421
(1991
).13.
B. P.
Gorshunov
, A. A.
Volkov
, G. V.
Kozlov
, L.
Degiorgi
, A.
Blank
, T.
Csiba
, M.
Dressel
, Y.
Kim
, A.
Schwartz
, and G.
Grüner
, Phys. Rev. Lett.
73
, 308
(1994
).14.
15.
We can exclude the explanation of the photoexcitation of coherent longitudinal acoustic phonons (CLAPs) from the anisotropy of the coherent oscillations (Fig. 3) and damping. For KMO, the reflectivity (Ref. 17) and the optical conductivity (Ref. 13) is isotropic for wavelengths in the visible range, i.e., photon energy Therefore, photoexcitation of CLAPs would result in polarization-independent (isotropic) oscillations of at 400 nm probe wavelength.
16.
B.
Hennion
, J. P.
Pouget
, and M.
Sato
, Phys. Rev. Lett.
68
, 2374
(1992
). A factor of is missing in the calculation of the phason velocity which had been included in Ref. 12.17.
G.
Travaglini
, P.
Wachter
, J.
Marcus
, and C.
Schlenker
, Solid State Commun.
37
, 599
(1981
);G.
Travaglini
, P.
Wachter
, J.
Marcus
, and C.
Schlenker
, Solid State Commun.
42
, 407
(1982
).18.
S.
Girault
, A. H.
Moudden
, and J. P.
Pouget
, Phys. Rev. B
39
, 4430
(1989
).20.
Since the penetration depth, ξ, in KMO is very small the momentum bandwidth of the excited coherent collective modes must be large: from and it follows that i.e., larger than the biggest probe used. Hence, we expect to generate a broad band of collective modes, comparable to the entire range of probe wavelengths.
21.
C.
Thomsen
, H. T.
Grahn
, H. J.
Maris
, and J.
Tauc
, Phys. Rev. B
34
, 4129
(1986
).22.
This content is only available via PDF.
© 2004 American Institute of Physics.
2004
American Institute of Physics
You do not currently have access to this content.