We report on time-resolved spectroscopy from the ultraviolet to mid-infrared spectrum of low-frequency collective excitations: dispersion and anisotropy of amplitude mode and phase mode in quasi-one-dimensional charge-density wave conductors, K0.3MoO3 and K0.33MoO3. Our results show that the time-resolved optical technique provides momentum resolution of collective modes.

1.
See, e.g., Charge Density Waves in Solids, edited by L. P. Gor’kov and G. Gruner (North Holland, Amsterdam, 1989);
Density Waves in Solids, edited by G. Grüner (Addison-Wesley, Reading, MA, 1994).
2.
D.
Mihailovic
,
D.
Dvorsek
,
V. V.
Kabanov
,
J.
Demsar
,
L.
Forro
, and
H.
Berger
,
Appl. Phys. Lett.
80
,
871
(
2002
).
3.
E.
Beaurepaire
,
J.-C.
Merle
,
A.
Daunois
, and
J.-Y.
Bigot
,
Phys. Rev. Lett.
76
,
4250
(
1983
).
4.
B.
Koopmans
,
M.
van Kampen
,
J. T.
Kohlhepp
, and
W. J. M.
de Jonge
,
Phys. Rev. Lett.
85
,
844
(
2000
).
5.
R. A.
Kaindl
,
M.
Woerner
,
T.
Elsaesser
,
D. C.
Smith
,
J. F.
Ryan
,
G. A.
Farnan
,
M. P.
McCurry
, and
D. G.
Walmsley
,
Science
287
,
470
(
2000
).
6.
T.
Kise
,
T.
Ogasawara
,
M.
Ashida
,
Y.
Tomioka
,
Y.
Tokura
, and
M.
Kuwata-Gonokami
,
Phys. Rev. Lett.
85
,
1986
(
2000
).
7.
J.
Demsar
,
K.
Biljakovic
, and
D.
Mihailovic
,
Phys. Rev. Lett.
83
,
800
(
1999
).
8.
A. A.
Tsvetkov
,
D. M.
Sagar
,
P. H. M.
van Loosdrecht
,
D.
van der Marel D
, and
S.
van Smaalen
,
Acta Phys. Pol. B
34
,
387
(
2003
).
9.
B.
Zawilski
,
J.
Richard
, and
J.
Marcus
,
Solid State Commun.
109
,
41
(
1999
).
10.
See, e.g., Femtosecond Laser Pulses: Principles and Experiments, edited by C. Rullière (Springer, New York, 1998).
11.
G.
Travaglini
,
I.
Morke
, and
P.
Wachter
,
Solid State Commun.
45
,
289
(
1983
).
12.
J. P.
Pouget
,
B.
Hennion
,
C.
Escribe-Filippini
, and
M.
Sato
,
Phys. Rev. B
43
,
8421
(
1991
).
13.
B. P.
Gorshunov
,
A. A.
Volkov
,
G. V.
Kozlov
,
L.
Degiorgi
,
A.
Blank
,
T.
Csiba
,
M.
Dressel
,
Y.
Kim
,
A.
Schwartz
, and
G.
Grüner
,
Phys. Rev. Lett.
73
,
308
(
1994
).
14.
A.
Virosztek
and
K.
Maki
,
Phys. Rev. B
48
,
1368
(
1993
).
15.
We can exclude the explanation of the photoexcitation of coherent longitudinal acoustic phonons (CLAPs) from the anisotropy of the coherent oscillations (Fig. 3) and damping. For KMO, the reflectivity (Ref. 17) and the optical conductivity (Ref. 13) is isotropic for wavelengths in the visible range, i.e., photon energy >2 eV. Therefore, photoexcitation of CLAPs would result in polarization-independent (isotropic) oscillations of ΔR at 400 nm probe wavelength.
16.
B.
Hennion
,
J. P.
Pouget
, and
M.
Sato
,
Phys. Rev. Lett.
68
,
2374
(
1992
). A factor of is missing in the calculation of the phason velocity which had been included in Ref. 12.
17.
G.
Travaglini
,
P.
Wachter
,
J.
Marcus
, and
C.
Schlenker
,
Solid State Commun.
37
,
599
(
1981
);
G.
Travaglini
,
P.
Wachter
,
J.
Marcus
, and
C.
Schlenker
,
Solid State Commun.
42
,
407
(
1982
).
18.
S.
Girault
,
A. H.
Moudden
, and
J. P.
Pouget
,
Phys. Rev. B
39
,
4430
(
1989
).
19.
The anisotropy cannot be explained by the optical properties of K0.3MoO3 since the reflectivity and optical conductivity is isotropic at photon energies above 2 eV (Refs. 13 and 17).
20.
Since the penetration depth, ξ, in KMO is very small (∼100 nm), the momentum bandwidth of the excited coherent collective modes must be large: from δqδx>1 and δx∼ξ∼100 nm it follows that δq>1×105cm−1, i.e., larger than the biggest q probe used. Hence, we expect to generate a broad band of collective modes, comparable to the entire range of probe wavelengths.
21.
C.
Thomsen
,
H. T.
Grahn
,
H. J.
Maris
, and
J.
Tauc
,
Phys. Rev. B
34
,
4129
(
1986
).
22.
H.-Y.
Hao
and
H. J.
Maris
,
Phys. Rev. Lett.
84
,
5556
(
2000
);
H.-Y.
Hao
and
H. J.
Maris
,
Phys. Rev. B
63
,
224301
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.