The self-assembly of nanostructured materials through controlled wavelength spinodal decomposition is explored using a simple model. The model assumes that a homogeneous alloy is deposited on a rigid, periodically strained substrate. A linear stability analysis establishes that the film will undergo spinodal decomposition with the dominant wavelength determined by the periodicity of the substrate strain.

1.
D.
Weller
and
A.
Moser
,
IEEE Trans. Magn.
35
,
4423
(
1999
).
2.
A. E.
Romanov
,
P. M.
Petroff
, and
J. S.
Speck
,
Appl. Phys. Lett.
74
,
2280
(
1999
).
3.
F.
Léonard
and
R. C.
Desai
,
Phys. Rev. B
58
,
8277
(
1998
).
4.
H.
Brune
,
M.
Giovannini
,
K.
Bromann
, and
K.
Kern
,
Nature (London)
394
,
451
(
1998
).
5.
F. K.
LeGoues
,
J.
Tersoff
,
M. C.
Reuter
,
M.
Hammar
, and
R. M.
Tromp
,
Appl. Phys. Lett.
67
,
2317
(
1995
).
6.
F. K.
LeGoues
,
M.
Hammar
,
M. C.
Reuter
, and
R. M.
Tromp
,
Surf. Sci.
349
,
249
(
1996
).
7.
J. C. P.
Chang
,
T. P.
Chin
, and
J. M.
Woodall
,
Appl. Phys. Lett.
69
,
961
(
1996
).
8.
F.
Glas
,
J. Appl. Phys.
62
,
3201
(
1987
).
9.
F.
Glas
,
Phys. Rev. B
55
,
11277
(
1997
).
10.
I. P.
Ipatova
,
V. G.
Malyshkin
, and
V. A.
Shchukin
,
J. Appl. Phys.
74
,
7198
(
1993
).
11.
J. W.
Cahn
,
Acta Metall.
9
,
795
(
1961
).
12.
A. G. Khachaturyan, Theory of Structural Transformations in Solids (Wiley, New York, 1983).
13.
A similar analysis was applied by Léonard and Desai, their work, however, studied decomposition during growth and mediated by surface diffusion only (see Ref. 3).
14.
Values for Γ and f2 were estimated for a typical imicible fcc metal alloy by bond counting arguments following Khachaturyan (see Ref. 12).
This content is only available via PDF.
You do not currently have access to this content.