We use dark current–voltage measurements on GaInNAs pn junctions as a direct probe of the dominant recombination mechanism in this material. The dark current is dominated by recombination through traps. Using the classic theory of Sah, Noyce, and Shockley, we deduce trap energies and carrier capture lifetimes as a function of band gap Eg. The trap energy is found to be roughly constant at ∼0.4 eV below the conduction band or above the valence band as Eg decreases from ∼1.1 to 0.9 eV with increasing [N]. Concomitantly, the capture lifetimes decrease from 5 to 0.08 ns. This rapid decrease has important implications for performance of high-[N] minority-carrier devices.

1.
M.
Kondow
,
K.
Uomi
,
A.
Niwa
,
T.
Kitatani
,
S.
Watahiki
, and
Y.
Yazawa
,
Jpn. J. Appl. Phys., Part 1
35
,
1273
(
1996
).
2.
D. J.
Friedman
,
J. F.
Geisz
,
S. R.
Kurtz
, and
J. M.
Olson
,
J. Cryst. Growth
195
,
409
(
1998
).
3.
S. R.
Kurtz
,
A. A.
Allerman
,
E. D.
Jones
,
J. M.
Gee
,
J. J.
Banas
, and
B. E.
Hammons
,
Appl. Phys. Lett.
74
,
729
(
1999
).
4.
J. F.
Geisz
and
D. J.
Friedman
,
Semicond. Sci. Technol.
17
,
769
(
2002
).
5.
D. J. Friedman, J. F. Geisz, S. R. Kurtz, and J. M. Olson, in 2nd World Conf. on Photovoltaic Energy Conversion (IEEE, Vienna, 1998), p. 3.
6.
H. J. Hovel, in Solar Cells, Semiconductors and Semimetals edited by R. K. Willardson and A. C. Beer, Vol. 11 (Academic, New York, 1975).
7.
C.
Skierbiszewski
,
P.
Perlin
,
P.
Wisniewski
,
W.
Knap
,
T.
Suski
,
W.
Walukiewicz
,
W.
Shan
,
K. M.
Yu
,
J. W.
Ager
,
E. E.
Haller
,
J. F.
Geisz
, and
J. M.
Olson
,
Appl. Phys. Lett.
76
,
2409
(
2000
).
8.
I. A.
Buyanova
,
W. M.
Chen
, and
C. W.
Tu
,
Semicond. Sci. Technol.
17
,
815
(
2002
).
9.
S. R.
Kurtz
,
N. A.
Modine
,
E. D.
Jones
,
A. A.
Allerman
, and
J. F.
Klem
,
Semicond. Sci. Technol.
17
,
843
(
2002
).
10.
A.
Kaschner
,
T.
Luttgert
,
H.
Born
,
A.
Hoffmann
,
A. Y.
Egorov
, and
H.
Riechert
,
Appl. Phys. Lett.
78
,
1391
(
2001
).
11.
B. M.
Keyes
,
J. F.
Geisz
,
P. C.
Dippo
,
R.
Reedy
,
C.
Kramer
,
D. J.
Friedman
,
S. R.
Kurtz
, and
J. M.
Olson
,
AIP Conf. Proc.
462
,
511
(
1999
).
12.
R. J.
Kaplar
,
A. R.
Arehart
,
S. A.
Ringel
,
A. A.
Allerman
,
R. M.
Sieg
, and
S. R.
Kurtz
,
J. Appl. Phys.
90
,
3405
(
2001
).
13.
D.
Kwon
,
R. J.
Kaplar
,
S. A.
Ringel
,
A. A.
Allerman
,
S. R.
Kurtz
, and
E. D.
Jones
,
Appl. Phys. Lett.
74
,
2830
(
1999
).
14.
P.
Krispin
,
S. G.
Spruytte
,
J. S.
Harris
, and
K. H.
Ploog
,
Appl. Phys. Lett.
80
,
2120
(
2002
).
15.
A.
Balcioglu
,
R. K.
Ahrenkiel
, and
D. J.
Friedman
,
Appl. Phys. Lett.
76
,
2397
(
2000
).
16.
C. T.
Sah
,
R. N.
Noyce
, and
W.
Shockley
,
Proc. IRE
45
,
1228
(
1957
).
17.
S. C.
Choo
,
Solid-State Electron.
11
,
1069
(
1968
).
18.
S. B.
Zhang
and
S. H.
Wei
,
Phys. Rev. Lett.
86
,
1789
(
2001
).
19.
J.-Y.
Duboz
,
J. A.
Gupta
,
Z. R.
Wasilewski
,
J.
Ramsey
,
R. L.
Williams
,
G. C.
Aers
,
B. J.
Riel
, and
G. I.
Sproule
,
Phys. Rev. B
66
,
085313
(
2002
).
20.
U.
Tisch
,
E.
Finkman
, and
J.
Salzman
,
Appl. Phys. Lett.
81
,
463
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.