We present the 1.55 μm GaInNAs/GaAs multiple quantum well (QW) heterostructures with a GaNAs or a GaInNAs barrier and space layer (BSL). The stronger improvement of photoluminescence efficiency has been observed with increasing N concentration in a GaNAs BSL, instead of increasing N composition in GaInNAs QWs, to achieve room-temperature emission above 1.5 μm for GaInNAs/GaNAs multiple QW structure, when the nitrogen concentration in GaInNAs QW is as high as 3%. A further enhancement of photoluminescence intensity and a remarkable reduction of emission linewidth of GaInNAs multiple QWs have been demonstrated by using a GaInNAs quaternary BSL. These effects of a GaInNAs BSL could be understood in terms of the improvement of structural properties of GaInNAs QWs, resulting from the reduction of the strain at QW/BSL interface. These results present a variable approach to further developing GaAs-based light sources in the telecommunication-wavelength range near 1.55 μm.

1.
J. S.
Harris
,
Semicond. Sci. Technol.
17
,
880
(
2002
).
2.
B.
Borchert
,
A. Y.
Egorov
,
S.
Illek
,
M.
Komainda
, and
H.
Riechert
,
Electron. Lett.
35
,
2204
(
1999
).
3.
M. C.
Larson
,
M.
Kondow
,
T.
Kitatani
,
K.
Nakahara
,
K.
Tamura
,
H.
Inoue
, and
H.
Oumi
,
IEEE Photonics Technol. Lett.
10
,
188
(
1998
).
4.
E.
Tournie
,
M.-A.
Pinault
,
M.
Laugt
,
J.-M.
Chauveau
,
A.
Trampert
, and
K. H.
Ploog
,
Appl. Phys. Lett.
82
,
1845
(
2003
).
5.
M.
Fischer
,
M.
Reinhardt
, and
A.
Forchel
,
Electron. Lett.
36
,
1208
(
2000
).
6.
I. A.
Buyanova
,
W. M.
Chen
,
G.
Pozina
,
J. P.
Bergman
,
B.
Monemar
,
H. P.
Xin
, and
C. W.
Tu
,
Appl. Phys. Lett.
75
,
501
(
1999
).
7.
Z.
Pan
,
L. H.
Li
,
W.
Zhang
,
Y. W.
Lin
, and
R. H.
Wu
,
Appl. Phys. Lett.
77
,
1280
(
2000
).
8.
A.
Polimeni
,
M.
Capizzi
,
M.
Geddo
,
M.
Fisher
,
M.
Reinhardt
, and
A.
Forchel
,
Phys. Rev. B
63
,
195320
(
2001
).
9.
W.
Ha
,
V.
Gambin
,
M.
Wistey
,
S.
Bank
,
H.
Yuen
,
S.
Kim
, and
J. S.
Harris
,
Electron. Lett.
38
,
277
(
2002
).
10.
X.
Yang
,
J. B.
Heroux
,
L. F.
Mei
, and
W. I.
Wang
,
Appl. Phys. Lett.
78
,
4068
(
2001
).
11.
J.-C.
Harmand
,
A.
Caliman
,
E. V. K.
Rao
,
L.
Largeau
,
J.
Ramos
,
R.
Teissier
,
L.
Travers
,
G.
Ungaro
,
B.
Theys
, and
I. F. L.
Dias
,
Sci. Technol.
17
,
778
(
2002
).
12.
M.
Sopanen
,
H. P.
Xin
, and
C. W.
Tu
,
Appl. Phys. Lett.
76
,
994
(
2000
).
13.
V. M.
Ustinov
,
A. Y.
Egorov
,
V. A.
Odnoblyudov
,
N. V.
Kryzhanovskaya
,
Y. G.
Musikhin
,
A. F.
Tsatsul’nikov
, and
Z. I.
Alferov
,
J. Cryst. Growth
251
,
388
(
2003
).
14.
S.
Malik
,
C.
Roberts
,
R.
Murray
, and
M.
Pate
,
Appl. Phys. Lett.
71
,
1987
(
1997
).
15.
E.-M.
Pavelescu
,
C. S.
Peng
,
T.
Jouhti
,
J.
Konttinen
,
W.
Li
,
M.
Pessa
,
M.
Dumitrescu
, and
S.
Spanulescu
,
Appl. Phys. Lett.
80
,
3054
(
2002
).
16.
C. S.
Peng
,
E.-M.
Pavelescu
,
T.
Jouhti
,
J.
Konttinen
,
I. M.
Fodchuk
,
Y.
Kyslovsky
, and
M.
Pessa
,
Appl. Phys. Lett.
80
,
4720
(
2002
).
17.
T.
Kitatani
,
M.
Kondow
, and
T.
Tanaka
,
J. Cryst. Growth
221
,
491
(
2000
).
18.
M.
Kondow
and
T.
Kitatani
,
Semicond. Sci. Technol.
17
,
746
(
2002
).
19.
J.-M.
Chauveau
,
A.
Trampert
,
K. H.
Ploog
,
M.-A.
Pinault
, and
E.
Tournie
,
Appl. Phys. Lett.
82
,
3451
(
2003
).
20.
M.
Queslati
,
M.
Zouaghi
,
M. E.
Pistol
,
L.
Samuelson
,
H. G.
Grimmeiss
, and
M.
Balkanski
,
Phys. Rev. B
32
,
8220
(
1985
).
21.
M. D.
Sturge
,
E.
Cohen
, and
R. A.
Logan
,
Phys. Rev. B
27
,
2362
(
1983
).
22.
L. C.
Lenchyshyn
,
M. L. W.
Thewalt
,
D. C.
Houghton
,
J.-P.
Noel
,
N. L.
Rowell
,
J. C.
Sturm
, and
X.
Xiao
,
Phys. Rev. B
47
,
R16655
(
1993
).
23.
T.
Hakkarainen
,
J.
Toivonen
,
M.
Sopanen
, and
H.
Lipsanen
,
J. Cryst. Growth
234
,
631
(
2002
).
24.
E.
Tournie
,
M.-A.
Pinault
,
S.
Vezian
,
J.
Massies
, and
O.
Tottereau
,
Appl. Phys. Lett.
77
,
2189
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.