The interband transitions of a capped CdSe quantum-dot structure have been investigated using contactless electroreflectance. The electroreflectance spectrum shows transitions originating from all the portions of the sample including the quantum dots and the wetting layer. The transitions of the two-dimensional layers have been modeled using an envelope approximation calculation which takes into account the biaxial strain in the wetting layer. A good agreement was found between the experimental values for the transition energies and the calculated ones. From atomic force microscopy measurements, a lens shape was observed for the uncapped quantum dots. Taking into account the lens shape geometry and assuming that the effective height-to-radius ratio is preserved, the size of the capped quantum dots was determined using the observed electroreflectance transitions, in the framework of the effective mass approximation.

1.
N.
Kirstaedter
,
O. G.
Schmidt
,
N. N.
Ledentsov
,
D.
Bimberg
,
V. M.
Ustinov
,
A. Yu.
Egorov
,
A. E.
Zhukov
,
M. V.
Maximov
,
P. S.
Kop’ev
, and
Zh. I.
Alferov
,
Appl. Phys. Lett.
69
,
1226
(
1996
).
2.
N. N.
Ledentsov
,
V. A.
Shchukin
,
M.
Grundmann
,
N.
Kirstaedter
,
J.
Böhrer
,
O.
Schmidt
,
D.
Bimberg
,
V. M.
Ustinov
,
A. Yu.
Egorov
,
A. E.
Zhukov
,
P. S.
Kop’ev
,
S. V.
Zaitsev
,
N. Yu.
Gordeev
,
Zh. I.
Alferov
,
A. I.
Borovkov
,
A. O.
Kosogov
,
S. S.
Ruvimov
,
P.
Werner
,
U.
Gösele
, and
J.
Heydenreich
,
Phys. Rev. B
54
,
8743
(
1996
).
3.
M.
Asada
,
Y.
Miyamoto
, and
Y.
Suematsu
,
IEEE J. Quantum Electron.
QE-22
,
1915
(
1986
).
4.
S. P.
Guo
,
X.
Zhou
,
O.
Maksimov
,
M. C.
Tamargo
,
C.
Chi.
,
A.
Couzis
,
C.
Maldarelli
,
I. L.
Kuskovsky
, and
G. F.
Newmark
,
J. Vac. Sci. Technol. B
19
,
1635
(
2001
).
5.
A.
Madhukar
,
Q.
Xie
,
P.
Chen
, and
A.
Konkar
,
Appl. Phys. Lett.
64
,
2727
(
1994
).
6.
A.
Kurtenbach
,
K.
Eberl
, and
T.
Shitara
,
Appl. Phys. Lett.
66
,
361
(
1995
).
7.
F.
Hatami
,
N. N.
Ledentsov
,
M.
Grundmann
,
J.
Böhrer
,
F.
Heinrichsdorff
,
M.
Beer
,
D.
Bimberg
,
S. S.
Ruvimov
,
P.
Werner
,
U.
Gösele
,
J.
Heydenreich
,
U.
Richter
,
S. V.
Ivanov
,
B. Ya.
Meltser
,
P. S.
Kop’ev
, and
Zh. I.
Alferov
,
Appl. Phys. Lett.
67
,
656
(
1995
).
8.
K. H.
Schmidt
,
G.
Medeiros-Ribeiro
,
M.
Oestreich
, and
P. M.
Petroff
,
Phys. Rev. B
54
,
11346
(
1996
).
9.
R.
Heitz
,
M.
Grundmann
,
N. N.
Ledentsov
,
L.
Eckey
,
M.
Veit
,
D.
Bimberg
,
V. M.
Ustinov
,
A. Yu.
Egorov
,
A. E.
Zhukov
,
P. S.
Kop’ev
, and
Zh. I.
Alferov
,
Appl. Phys. Lett.
68
,
361
(
1996
).
10.
S.
Raymond
,
S.
Fafard
,
P. J.
Poole
,
A.
Wojs
,
P.
Hawrylak
,
S.
Charbonneau
,
D.
Leonard
,
R.
Leon
,
P. M.
Petroff
, and
J. L.
Merz
,
Phys. Rev. B
54
,
11548
(
1996
).
11.
F. H. Pollak, in Nano-Optoelectronics, edited by M. Grundmann (Springer, Berlin, 2002), pp. 215–238, and references therein.
12.
C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic, San Diego, 1991), p. 6.
13.
D.
Li
and
M. D.
Pashley
,
J. Vac. Sci. Technol. B
12
,
2547
(
1994
).
14.
F. H. Pollak, in Group III Nitride Semiconductor Compounds, edited by B. Gil (Clarendon, Oxford, 1998), p. 158.
15.
F. H.
Pollak
and
H.
Shen
,
Mater. Sci. Eng., R.
10
,
275
(
1993
).
16.
M. Cardona, Modulation Spectroscopy (Academic, New York, 1969).
17.
G.
Bastard
and
J. A.
Brum
,
IEEE J. Quantum Electron.
QE-22
,
1625
(
1986
);
G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les editions de Physique, Cedex, France, 1988).
18.
S. H.
Pan
,
H.
Shen
,
Z.
Hang
,
F. H.
Pollak
,
W.
Zhuang
,
Q.
Xu
,
A. P.
Roth
,
R. A.
Masut
,
C.
Lacelle
, and
D.
Morris
,
Phys. Rev. B
38
,
3375
(
1988
).
19.
F. H. Pollak, in Effects of Uniaxial Stress on the Optical Properties of Semiconductors and Semiconductor Microstructures, Semiconductors and Semimetals Vol. 55, edited by R. K. Willardson and A. C. Beer (Academic, San Diego, 1998), Chap. 4.
20.
Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, M. Schultz, and H. Weiss (Springer, New York, 1982), Vol. III/11.
21.
A.
Blacha
,
H.
Presting
, and
M.
Cardona
,
Phys. Status Solidi B
126
,
11
(
1984
).
22.
T. P.
Surkova
,
M.
Godlewski
,
K.
Swiatek
,
P.
Kaczor
,
A.
Polimeni
,
L.
Eaves
, and
W.
Giriat
,
Physica B
273–274
,
848
(
1999
).
23.
A. H.
Rodrı́guez
,
C.
Trallero-Giner
,
S. E.
Ulloa
, and
J.
Marı́n-Antuña
,
Phys. Rev. B
63
,
125319
(
2001
);
A. H. Rodrı́guez, Carlos R. Handy, and C. Trallero-Giner, J. Phys. A (to be published).
24.
J. L.
Merz
,
S.
Lee
, and
J. K.
Furdyna
,
J. Cryst. Growth
184–185
,
228
(
1998
).
25.
O.
Suekane
,
S.
Hasegawa
,
T.
Okui
,
M.
Takata
, and
H.
Nakashima
,
Jpn. J. Appl. Phys., Part 1
41
,
1022
(
2002
).
26.
O. Suekane, in Nano-Optoelectronics, edited by M. Grundmann (Springer, New York, 2001).
27.
I. V. Markov, Crystal Growth for Beginners (World Scientific, Singapore, 1995).
28.
Y. Gu and I. L. Kuskovsky (private communication).
29.
R. E. Nahory, M. J. S. P. Brasil, and M. C. Tamargo, in Semiconductor Interfaces and Microstructures, edited by Z. Feng (World Scientific, Singapore, 1992), p. 238.
30.
Semiconductors—BasicData, 2nd ed., edited by O. Madelung (Springer, Berlin, 1996).
31.
P.
Lawaetz
,
Phys. Rev. B
4
,
3460
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.