Hydrogen adsorption measurements on two types of different carbon nanomaterials were carried out at 77 K up to hydrogen pressures of 2 MPa using the volumetric method modified for low-temperature experiments. The adsorption property was concluded as dense hydrogen physisorption in subnanometer-sized pores because of the Langmuir-type isotherm, reversible adsorption/desorption, and large hydrogen uptake exceeding 2 wt %. The estimated density of adsorbed hydrogen was comparable to the density of bulk liquid hydrogen, indicating that hydrogen filling would be attainable when both the chemical potential of hydrogen and adsorption potential of carbon were optimized.

1.
S. Ross and J. P. Olivier, On Physical Adsorption (Wiley, New York, 1964), pp. 257–275.
2.
D. M. Young and A. D. Crowell, Physical Adsorption of Gases (Butterworths, London, 1962), pp. 1–106.
3.
M.
Shiraishi
,
T.
Takenobu
, and
M.
Ata
,
Chem. Phys. Lett.
367
,
633
(
2003
).
4.
A. C.
Dillon
,
K. M.
Jones
,
T. A.
Bekkedahl
,
C. H.
Kiang
,
D. S.
Bethune
, and
M. J.
Heben
,
Nature (London)
386
,
377
(
1997
).
5.
C.
Liu
,
Y. Y.
Fan
,
M.
Liu
,
H. T.
Cong
,
H. M.
Cheng
, and
M. S.
Dresselhaus
,
Science
286
,
1127
(
1999
).
6.
M.
Hirsher
,
M.
Becher
,
M.
Haluska
,
U.
Dettlaff-Weglikowska
,
A.
Quintel
,
G. S.
Duesberg
,
Y.-M.
Choi
,
P.
Downes
,
M.
Hulman
,
S.
Roth
,
I.
Stepanek
, and
P.
Bernier
,
Appl. Phys. A: Mater. Sci. Process.
72
,
129
(
2001
).
7.
R. T.
Yang
,
Carbon
38
,
623
(
2000
).
8.
C. C.
Ahn
,
Y.
Ye
,
B. V.
Ratnakumar
,
C.
Witham
,
R. C.
Bowman
, and
B.
Fultz
,
Appl. Phys. Lett.
73
,
3378
(
1998
).
9.
S.
Orimo
,
G.
Majer
,
T.
Fukunaga
,
A.
Züttel
,
L.
Schlapbach
, and
H.
Fujii
,
Appl. Phys. Lett.
75
,
3093
(
1999
).
10.
S.
Orimo
,
T.
Matsushima
,
H.
Fujii
,
T.
Fukunaga
, and
G.
Majer
,
J. Appl. Phys.
90
,
1545
(
2001
).
11.
C.
Liu
,
Q. H.
Yang
,
Y.
Tong
,
H. T.
Cong
, and
H. M.
Cheng
,
Appl. Phys. Lett.
80
,
2389
(
2002
).
12.
Y.
Ye
,
C. C.
Ahn
,
C.
Witham
,
B.
Fulz
,
J.
Liu
,
A. G.
Linzler
,
D.
Colbert
,
K. A.
Smith
, and
R. E.
Smalley
,
Appl. Phys. Lett.
74
,
2307
(
1999
).
13.
E.
Johansson
,
B.
Hjörvarsson
,
T.
Ekström
, and
M.
Jacob
,
J. Alloys Compd.
330
,
670
(
2002
).
14.
H.
Kajiura
,
S.
Tsutsui
,
K.
Kadono
,
K.
Kakuta
,
M.
Ata
, and
Y.
Murakami
,
Appl. Phys. Lett.
82
,
1105
(
2003
).
15.
E.
Poirier
,
R.
Chahine
, and
T. K.
Bose
,
Int. J. Hydrogen Energy
26
,
831
(
2001
).
16.
T.
Kiyobayashi
,
H. T.
Takeshita
,
H.
Tanaka
,
N.
Takeichi
,
A.
Züttel
,
L.
Schlapbach
, and
N.
Kuriyama
,
J. Alloys Compd.
330
,
666
(
2002
).
17.
G.
Hovarth
and
K.
Kawazoe
,
J. Chem. Eng. Jpn.
16
,
470
(
1983
).
18.
Q.
Wang
and
J. K.
Johnson
,
J. Chem. Phys.
110
,
577
(
1999
).
19.
M. A.
de la Casa-Lillo
,
F.
Lamari-Darkrim
,
D.
Cazorla-Amorós
, and
A.
Linares-Solano
,
J. Phys. Chem. B
106
,
10930
(
2002
).
20.
Showa Denko technical report, “Vapor Grown Carbon Fiber.”
21.
The amount of adsorbed hydrogen was 0.2 wt % up to 4 MPa of hydrogen pressure at room temperature, which is comparable to the measurement error in this experiment. The isotherm followed Henry’s law.
22.
Handbook of Chemistry and Physics, 76th ed., edited by D. R. Lide (CRC Press, Boca Raton, FL, 1995).
23.
Gas compressibility z is expressed by the following fomula, z=1+p(a+bT−1+cT−2+dT−3+eT−4), where a,b,c,d and e are constants. The equation of state is corrected using this coefficient as pV=znRT.
24.
Japanese Industrial Standards Committee, H 7201 (1991) (in Japanese).
25.
M.
Shiraishi
,
T.
Takenobu
,
A.
Yamada
,
M.
Ata
, and
H.
Kataura
,
Chem. Phys. Lett.
358
,
213
(
2002
).
26.
K.
Kanoh
and
K.
Kaneko
,
J. Phys. Chem.
100
,
755
(
1996
).
27.
T.
Iiyama
,
K.
Nishikawa
,
T.
Suzuki
,
T.
Otowa
,
M.
Hijiriyama
,
Y.
Nojimam
, and
K.
Kaneko
,
J. Phys. Chem. B
101
,
3037
(
1997
).
28.
T.
Okubo
,
T.
Iiyama
, and
K.
Kaneko
,
Chem. Phys. Lett.
312
,
191
(
1999
).
29.
T.
Iiyama
,
M.
Ruike
, and
K.
Kaneko
,
Chem. Phys. Lett.
331
,
359
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.