The present study is to enhance the critical heat flux (CHF) in pool boiling from a flat square heater immersed in nanofluid (water mixed with extremely small amount of nanosized particles). The test results show that the enhancement of CHF was drastic when nanofluid is used as a cooling liquid instead of pure water. The experiment was performed to measure and compare pool boiling curves of pure water and nanofluid at the pressure of 2.89 psia (Tsat=60 °C) using 1×1 cm2 polished copper surfaces as a boiling surface. The tested nanofluid contains alumina (Al2O3) nanoparticles dispersed in distilled and deionized water. Tested concentrations of nanoparticles range from 0 g/l to 0.05 g/l. The measured pool boiling curves of nanofluids saturated at 60 °C have demonstrated that the CHF increases dramatically (∼200% increase) compared to pure water case; however, the nucleate boiling heat transfer coefficients appear to be about the same.

1.
S.
Nukiyama
,
Int. J. Heat Mass Transfer
9
,
1419
(
1934
).
2.
S. S. Kutateladze, Heat Transfer in Condensation and Boiling, USAEC Report, AEC-tr-3770 (1952).
3.
R. F.
Gaertner
,
ASME J. Heat Transfer
87
,
17
(
1965
).
4.
N. Zuber, Ph.D. thesis, UCLA, Los Angeles, CA, 1959.
5.
J. H.
Lienhard
and
P. T. Y.
Wong
,
ASME J. Heat Transfer
86
,
94
(
1964
).
6.
J. M.
Ramilison
,
P.
Sadasivan
, and
J. H.
Lienhard
,
ASME J. Heat Transfer
114
,
287
(
1992
).
7.
J. Y.
Chang
and
S. M.
You
,
Int. J. Heat Mass Transfer
40
,
4437
(
1997
).
8.
G.
Hetsroni
,
J. L.
Zakin
, and
Z.
Lin
,
Int. J. Heat Mass Transfer
44
,
485
(
2001
).
9.
Y.
Fujita
and
Q.
Bai
,
Int. J. Refrig.
20
,
616
(
1997
).
10.
U. S.
Choi
,
ASME, FED-Vol. 231/MD
66
,
99
(
1995
).
11.
S. U. S.
Choi
,
Z. G.
Zhang
,
W.
Yu
,
F. E.
Lockwood
, and
E. A.
Grulke
,
Appl. Phys. Lett.
79
,
2252
(
2001
).
12.
J. A.
Eastman
,
S. U. S.
Choi
,
S.
Li
,
W.
Yu
, and
L. J.
Thompson
,
Appl. Phys. Lett.
78
,
718
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.