The electronic structure of GaAsN alloys was previously described in terms of nitrogen “cluster states” (CS) that exist in the dilute alloy in the bandgap, and “perturbed host states” (PHS) inside the conduction band. As the nitrogen concentration increases, the PHS plunge down in energy overtaking the CS. We show theoretically that the CS respond to the application of pressure in two different ways: the highly localized deep CS emerge (or remain) in the gap, because their pressure coefficient is lower than that of the conduction band minimum. In contrast, the shallow CS (first to be overtaken) hybridize so strongly with the conduction band that their pressure coefficient becomes comparable to that of the conduction states. These states fail to emerge into the gap upon application of pressure because they move, with application of pressure, at a similar rate with conduction states.

1.
P. R. C.
Kent
and
A.
Zunger
,
Phys. Rev. Lett.
86
,
2613
(
2001
).
2.
T.
Mattila
,
S.-H.
Wei
, and
A.
Zunger
,
Phys. Rev. B
60
,
R11245
(
1999
).
3.
L.
Bellaiche
,
S.-H.
Wei
, and
A.
Zunger
,
Phys. Rev. B
54
,
17568
(
1996
).
4.
P. R. C.
Kent
and
A.
Zunger
,
Phys. Rev. B
64
,
115208
(
2001
).
5.
D. G.
Thomas
,
J. J.
Hopfield
, and
C. J.
Frosch
,
Phys. Rev. Lett.
15
,
857
(
1965
).
6.
B.
Gil
,
J.
Camassel
,
J. P.
Albert
, and
H.
Mathieu
,
Phys. Rev. B
33
,
2690
(
1986
).
7.
H. A.
McKay
,
R. M.
Feenstra
,
T.
Schmidtling
, and
U. W.
Pohl
,
Appl. Phys. Lett.
78
,
82
(
2001
).
8.
X.
Liu
,
M.-E.
Pistol
,
L.
Samuleson
,
S.
Schwetlick
, and
W.
Seifert
,
Appl. Phys. Lett.
56
,
1451
(
1990
).
9.
P. N.
Hai
,
W. M.
Chen
,
I. A.
Buyanova
,
H. P.
Xin
, and
C. W.
Tu
,
Appl. Phys. Lett.
77
,
1843
(
2000
).
10.
G. Baldassarri Höger von Högersthal, A. Polimeni, M. Bissiri, M. Capizzi, M. Fischer, M. Reinhardt, and A. Forchel (unpublished).
11.
Y.
Zhang
,
B.
Fluegel
,
A.
Mascarenhas
,
H. P.
Xin
, and
C. W.
Tu
,
Phys. Rev. B
62
,
4493
(
2000
).
12.
J. D.
Perkins
,
A.
Mascarenhas
,
J. F.
Geisz
, and
D. J.
Friedman
,
Phys. Rev. B
64
,
121301
(
2001
).
13.
A.
Polimeni
,
M.
Capizzi
,
M.
Geddo
,
M.
Fischer
,
M.
Reinhardt
, and
A.
Forchel
,
Appl. Phys. Lett.
77
,
2870
(
2000
).
14.
P. J.
Klar
,
H.
Grüning
,
W.
Heimbrodt
,
J.
Koch
,
F.
Höhnsdorf
,
W.
Stolz
,
P. M. A.
Vicente
, and
J.
Camassel
,
Appl. Phys. Lett.
76
,
3439
(
2000
).
15.
I. A.
Buyanova
,
W. M.
Chen
, and
B.
Monemar
,
MRS Internet J. Nitride Semicond. Res.
6
,
2
(
2001
).
16.
I. A.
Buyanova
,
G. Yu.
Rudko
,
W. M.
Chen
,
H. P.
Xin
, and
C. W.
Tu
,
Appl. Phys. Lett.
80
,
1740
(
2002
).
17.
B. A. Weinstein, T. M. Ritter, S. Stambach, J. O. Maclean, and D. J. Wallis, in Proceedings of the International Conference on the Physics of Semiconductors (ICPS), Edinburgh, 2002 (in press).
18.
K.
Kim
,
P. R. C.
Kent
,
A.
Zunger
, and
C. B.
Geller
,
Phys. Rev. B
66
,
045208
(
2002
).
19.
D. J. Wolford, J. A. Bradley, K. Fry, and J. Thompson, in Proceedings of the 17th International Conference of the Physics of Semiconductors (Springer, New York, 1984), p. 627.
20.
S.
Ernst
,
A.
Goni
,
K.
Syassen
, and
M.
Cardona
,
Phys. Rev. B
53
,
1287
(
1996
).
21.
W.
Shan
,
W.
Walukiewicz
,
J. W.
Ager III
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
,
J. M.
Olson
, and
S. R.
Kurtz
,
Phys. Rev. Lett.
82
,
1221
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.