High-efficiency/high-luminance small-molecule organic light-emitting diodes (OLEDs) are fabricated by combining thin, covalently-bound triarylamine hole injection/adhesion interlayers with hole- and exciton-blocking/electron transport interlayers in tris(8-hydroxyquinolato)aluminum (III) (Alq)-based OLEDs. Power and forward external quantum efficiencies as high as 15.2 lm/W and 4.4±0.5%, respectively, and turn-on voltages ∼4.5 V are achieved in devices of the structure ITO/TPDSi2/NPB/Alq:DIQA/BCP/Li/MgAg [NPB=(N,N-di(1-napthl)-N,N-diphenyl benzidine)] TPDSi2 interlayers are straightforwardly fabricated by spin-casting N,N-diphenyl-N,N-bis(p-trichlorosilylpropylphenyl)(1,1-biphenyl)-4,4-diamineTPDSi2 onto the ITO surface, while 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) interlayers are introduced by thermal evaporation. High quantum efficiencies are attributed to the synergistic enhanced hole/electron injection and exciton confinement effects of the TPDSi2 and BCP interlayers, respectively.

1.
S. E.
Shaheen
,
G. E.
Jabbour
,
B.
Kippelen
,
N.
Peyghambarian
,
J. D.
Anderson
,
S. R.
Marder
,
N. R.
Armstrong
,
E.
Bellmann
, and
R. H.
Grubbs
,
Appl. Phys. Lett.
74
,
3212
(
1999
).
2.
Y.
Ohmori
,
H.
Kajii
,
T.
Sawatani
,
H.
Ueta
, and
K.
Yoshino
,
Thin Solid Films
393
,
407
(
2001
).
3.
T.
Watanabe
,
K.
Nakaumra
,
S.
Kawami
,
Y.
Fukuda
,
T.
Tsuji
,
T.
Wakimoto
,
S.
Miyaguchi
,
M.
Yahiro
,
M.
Yang
, and
T.
Tsutsui
,
Synth. Met.
122
,
203
(
2001
).
4.
B. W.
D’Andrade
,
M. A.
Baldo
,
C.
Adachi
,
J.
Brooks
,
M. E.
Thompson
, and
S. R.
Forrest
,
Appl. Phys. Lett.
79
,
1045
(
2001
).
5.
D. Z.
Garbuzov
,
V.
Bulovic
,
P. E.
Burrows
, and
S. R.
Forrest
,
Chem. Phys. Lett.
249
,
433
(
1996
).
6.
S. E.
Shaheen
,
B.
Kippelen
,
N.
Peyghambarian
,
J.-F.
Wang
,
J. D.
Anderson
,
E. A.
Mash
,
P. A.
Lee
,
N. R.
Armstrong
, and
Y.
Kawabe
,
J. Appl. Phys.
85
,
7939
(
1999
).
7.
M. A.
Baldo
,
S.
Lamansky
,
P. E.
Burrows
,
M. E.
Thompson
, and
S. R.
Forrest
,
Appl. Phys. Lett.
75
,
4
(
1999
).
8.
G. E.
Jabbour
,
Y.
Kawabe
,
S. E.
Shaheen
,
J. F.
Wang
,
M. M.
Morrell
,
B.
Kippelen
, and
N.
Peyghambarian
,
Appl. Phys. Lett.
71
,
1762
(
1997
).
9.
E. W.
Forsythe
,
M. A.
Abkowitz
, and
Y.
Gao
,
J. Phys. Chem. B
104
,
3948
(
2000
).
10.
Y.
Shen
,
D. B.
Jacobs
,
G. G.
Malliaras
,
G.
Koley
,
M. G.
Spencer
, and
A.
Ioannidis
,
Adv. Mater.
13
,
1234
(
2001
).
11.
M.
Gross
,
D.
Muller
,
H.
Nothofer
,
U.
Scherf
,
D.
Neher
,
C.
Brauchle
, and
K.
Meerholz
,
Nature (London)
405
,
661
(
2000
).
12.
J.
Cui
,
Q.
Huang
,
J. G. C.
Veinot
,
H.
Yan
, and
T.
Marks
,
Adv. Mater.
14
,
565
(
2002
).
13.
J. E.
Malinsky
,
G. E.
Jabbour
,
S. E.
Shaheen
,
J. D.
Anderson
,
A. G.
Richter
,
T. J.
Marks
,
N. R.
Armstrong
,
B.
Kippelen
,
P.
Dutta
, and
N.
Peyghambarian
,
Adv. Mater.
11
,
227
(
1999
).
14.
F.
Nüesch
,
E. W.
Forsythe
,
Q. T.
Le
,
Y.
Gao
, and
L. J.
Rothberg
,
J. Appl. Phys.
87
,
7973
(
2000
).
15.
S. F. J.
Appleyard
,
S. R.
Day
,
R. D.
Pickford
, and
M. R.
Willis
,
J. Mater. Chem.
10
,
169
(
2000
).
16.
J.
Cui
,
Q.
Huang
,
Q.
Wang
, and
T. J.
Marks
,
Langmuir
17
,
2051
(
2001
).
17.
C.
Giebeler
,
H.
Antoniadis
,
D. D. C.
Bradley
, and
Y.
Shirota
,
J. Appl. Phys.
85
,
608
(
1999
).
18.
D. V.
Khramtchenkov
,
H.
Bassler
, and
V. I.
Arkhipov
,
J. Appl. Phys.
79
,
9283
(
1996
).
19.
G.
Parthasarathy
,
C.
Adachi
,
P. E.
Burrows
, and
S. R.
Forrest
,
Appl. Phys. Lett.
76
,
2128
(
2000
).
20.
D.
Troadec
,
G.
Veriot
, and
A.
Moliton
,
Synth. Met.
127
,
165
(
2002
).
21.
Z. Y.
Xie
,
L. S.
Hung
, and
S. T.
Lee
,
Appl. Phys. Lett.
79
,
1048
(
2001
).
22.
C.
Schmitz
,
M.
Thelakkat
, and
H.-W.
Schmidt
,
Adv. Mater.
11
,
821
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.