The effect of electrical doping on the interface molecular level alignment at organic–organic (OO) heterojunctions is studied with ultraviolet photoemission spectroscopy. Interfaces between hole transport layers (HTL) and electron transport layers are investigated as a function of p doping of the HTLs. Doping induces the formation of an interface dipole with corresponding shift in the relative position of molecular levels across the interface. The modification of the OO electronic structure is believed to be due to the presence of doping-induced excess holes at the interface.

1.
H.
Ishii
,
K.
Sugiyama
,
E.
Ito
, and
K.
Seki
,
Adv. Mater. (Weinheim, Ger.)
11
,
605
(
1999
).
2.
I. G.
Hill
,
A.
Rajagopal
,
A.
Kahn
, and
Y.
Hu
,
Appl. Phys. Lett.
73
,
662
(
1998
).
3.
I. G.
Hill
,
J.
Schwartz
, and
A.
Kahn
,
Organic Electronics
1
,
5
(
2000
).
4.
C.
Shen
and
A.
Kahn
,
Organic Electronics
2
,
89
(
2001
).
5.
X.
Crispin
,
V. M.
Geskin
,
A.
Crispin
,
J.
Cornil
,
R.
Lazzaroni
,
W. R.
Salaneck
, and
J. L.
Bredas
,
J. Am. Chem. Soc.
124
,
8131
(
2002
).
6.
N.
Koch
,
J.
Ghijsen
,
A.
Elschner
,
R. L.
Johnson
,
J.-J.
Pireaux
,
J.
Schwarz
, and
A.
Kahn
,
Appl. Phys. Lett.
82
,
70
(
2003
).
7.
H.
Ishii
,
K.
Sugiyama
,
D.
Yochimura
,
E.
Ito
,
Y.
Ouchi
, and
K.
Seki
,
IEEE J. Sel. Top. Quantum Electron
4
,
24
(
1998
).
8.
I. G.
Hill
and
A.
Kahn
,
J. Appl. Phys.
84
,
5583
(
1998
).
9.
R.
Schlaf
,
B. A.
Parkinson
,
P. A.
Lee
,
K. W.
Nebesny
, and
N. R.
Armstrong
,
Appl. Phys. Lett.
73
,
1026
(
1998
).
10.
I. G.
Hill
,
D.
Milliron
,
J.
Schwarz
, and
A.
Kahn
,
Appl. Surf. Sci.
166
,
354
(
2000
).
11.
A.
Rajagopal
,
C. I.
Wu
, and
A.
Kahn
,
J. Appl. Phys.
83
,
2649
(
1998
).
12.
M.
Pfeiffer
,
A.
Beyer
,
T.
Fritz
, and
K.
Leo
,
Appl. Phys. Lett.
73
,
3202
(
1998
).
13.
A.
Nollau
,
M.
Pfeiffer
,
T.
Fritz
, and
K.
Leo
,
J. Appl. Phys.
87
,
4340
(
2000
).
14.
W.
Gao
and
A.
Kahn
,
Appl. Phys. Lett.
79
,
4040
(
2001
).
15.
J.
Blochwitz
,
M.
Pfeiffer
,
T.
Fritz
,
K.
Leo
,
D. M.
Alloway
,
P. A.
Lee
, and
N. R.
Armstrong
,
Organic Electronics
2
,
97
(
2001
).
16.
W.
Gao
and
A.
Kahn
,
Organic Electronics
3
,
53
(
2002
).
17.
W. Gao and A. Kahn, J. Appl. Phys. (to be published).
18.
I. G.
Hill
,
A.
Kahn
,
Z. G.
Soos
, and
R. A.
Pascal
, Jr.
,
Chem. Phys. Lett.
327
,
181
(
2000
).
19.
C. Shen, Ph.D thesis, Princeton University, 2001 (unpublished).
20.
The optical gap of CBP is 3.1 eV, which is the same as α-NPD. Considering their similar chemical structures, we assume that CBP has the same transport gap (∼4.0 eV) as α-NPD.
This content is only available via PDF.
You do not currently have access to this content.