Gallium nitride nanorods were synthesized by a chemical vapor deposition using the reaction of gallium/gallium nitride with ammonia. All nanorods have, exclusively, a triangle cross section with an average diameter of 50 nm. They consist of single-crystalline wurtzite structure crystal grown with the [010] direction. X-ray diffraction and Raman spectroscopy data suggest no shift of the lattice constants from those of the bulk. Temperature-dependent photoluminescence exhibits the I2 and free-to-bound emission peaks. The present triangular gallium nitride nanorods would be free from the stress, having the band-gap energy of the bulk.

1.
S. N.
Mohammad
and
H.
Morkoç
,
Prog. Quantum Electron.
20
,
361
(
1996
).
2.
G.
Fasol
,
Science
272
,
1751
(
1996
).
3.
S.
Nakamura
,
Science
281
,
956
(
1998
).
4.
F. A.
Ponce
and
D. P.
Bour
,
Nature (London)
386
,
351
(
1997
).
5.
W.
Han
,
S.
Fan
,
Q.
Li
, and
Y.
Hu
,
Science
277
,
1287
(
1997
).
6.
W.
Han
,
P.
Redlich
,
F.
Ernst
, and
M.
Rühle
,
Appl. Phys. Lett.
76
,
652
(
2000
).
7.
X.
Duan
and
C. M.
Lieber
,
J. Am. Chem. Soc.
122
,
188
(
2000
).
8.
J. Y.
Li
,
X. L.
Chen
,
Z. Y.
Qiao
,
Y. G.
Cao
, and
Y. C.
Lan
,
J. Cryst. Growth
213
,
408
(
2000
).
9.
W.-Q.
Han
and
A.
Zettl
,
Appl. Phys. Lett.
80
,
303
(
2002
).
10.
C. C.
Tang
,
S. S.
Fan
,
H. Y.
Dang
,
P.
Li
, and
Y. M.
Liu
,
Appl. Phys. Lett.
77
,
1961
(
2000
).
11.
H. Y.
Peng
,
X. T.
Zhou
,
N.
Wang
,
Y. F.
Zheng
,
L. S.
Liao
,
W. S.
Shi
,
C. S.
Lee
, and
S. T.
Lee
,
Chem. Phys. Lett.
327
,
263
(
2000
).
12.
C.-C.
Chen
and
C.-C.
Yeh
,
Adv. Mater.
12
,
738
(
2000
).
13.
X.
Chen
,
J.
Li
,
Y.
Cao
,
Y.
Lan
,
H.
Li
,
M.
He
,
C.
Wang
,
Z.
Zhang
, and
Z.
Qiao
,
Adv. Mater.
12
,
1432
(
2000
).
14.
C.-C.
Chen
,
C.-C.
Yeh
,
C.-H.
Chen
,
M.-Y.
Yu
,
H.-L.
Liu
,
J.-J.
Wu
,
K.-H.
Chen
,
L.-C.
Chen
,
J.-Y.
Peng
, and
Y.-F.
Chen
,
J. Am. Chem. Soc.
123
,
2791
(
2001
).
15.
H. W.
Seo
,
S. Y.
Bae
,
J.
Park
,
H.
Yang
,
K. S.
Park
, and
S.
Kim
,
J. Chem. Phys.
116
,
9492
(
2002
).
16.
H.-M.
Kim
,
D. S.
Kim
,
Y. S.
Park
,
D. Y.
Kim
,
T. W.
Kang
, and
K. S.
Chung
,
Adv. Mater.
14
,
991
(
2002
).
17.
D. A.
Neumayer
and
J. G.
Ekerdt
,
Chem. Mater.
8
,
9
(
1996
).
18.
H. Y.
Peng
,
N.
Wang
,
X. T.
Zhou
,
Y. F.
Zheng
,
C. S.
Lee
, and
S. T.
Lee
,
Chem. Phys. Lett.
359
,
241
(
2002
).
19.
T.
Azuhata
,
T.
Sota
,
K.
Suzuki
, and
S.
Nakamura
,
J. Phys.: Condens. Matter
7
,
L129
(
1995
).
20.
V. Yu.
Davydov
,
Yu. E.
Kitaev
,
I. N.
Goncharuk
,
A. N.
Smirnov
,
J.
Graul
,
O.
Semchinova
,
D.
Uffmann
,
M. B.
Smirnov
,
A. P.
Mirgorodsky
, and
R. A.
Evarestov
,
Phys. Rev. B
58
,
12899
(
1998
).
21.
M.
Klose
,
N.
Wieser
,
G. C.
Rohr
,
R.
Dassow
,
F.
Scholz
, and
J.
Off
,
J. Cryst. Growth
189/190
,
634
(
1998
).
22.
H. M.
Chen
,
Y. F.
Chen
,
M. C.
Lee
, and
M. S.
Feng
,
Phys. Rev. B
56
,
6942
(
1997
).
23.
O.
Lagerstedt
and
B.
Monemar
,
J. Appl. Phys.
45
,
2266
(
1974
).
24.
G. Popovici and H. Morkoç, in GaN and Related Materials II, edited by S. J. Pearton (Gordon and Breach, Amsterdam, 2000).
25.
J. M.
Myoung
,
O.
Gluschenkov
,
K.
Kim
, and
S.
Kim
,
J. Vac. Sci. Technol. A
17
,
3019
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.