The length and the spacing of carbon nanotube (CNT) films are varied independently to investigate their effect on the field-emission characteristics of the vertically aligned CNT films grown by plasma-enhanced hot filament chemical vapor deposition using pulsed-current electrochemically deposited catalyst particles. It is shown that, in general, the macroscopic electric field Emac,1, defined as the electric field when the emission current density reaches 1 mA/cm2, can be reduced by increasing the length and the spacing of CNTs. However, for the very-high-density CNT films, the increase of length increases Emac,1 slightly, whereas for the very short CNT films, the increase of spacing does not effectively reduce Emac,1.

1.
J.-M.
Bonard
,
F.
Maier
,
T.
Stöckli
,
A.
Châtelain
,
W. A.
de Heer
,
J.-P.
Salvetat
, and
L.
Forró
,
Ultramicroscopy
73
,
7
(
1998
).
2.
O.
Gröning
,
O. M.
Küttel
,
Ch.
Emmenegger
,
P.
Gröning
, and
L.
Schlapbach
,
J. Vac. Sci. Technol. B
18
,
665
(
2000
).
3.
L.
Nilsson
,
O.
Groening
,
C.
Emmenegger
,
O.
Kuettel
,
E.
Schaller
,
L.
Schlapbach
,
H.
Kind
,
J.-M.
Bonard
, and
K.
Kern
,
Appl. Phys. Lett.
76
,
2071
(
2000
).
4.
J.-M.
Bonard
,
N.
Weiss
,
H.
Kind
,
T.
Stöckli
,
L.
Forró
,
K.
Kern
, and
A.
Châtelain
,
Adv. Mater. (Weinheim, Ger.)
13
,
184
(
2001
).
5.
M.
Chhowalla
,
C.
Ducati
,
N. L.
Rupesinghe
,
K. B. K.
Teo
, and
G. A. J.
Amaratunga
,
Appl. Phys. Lett.
79
,
2079
(
2001
).
6.
K. B. K.
Teo
,
M.
Chhowalla
,
G. A. J.
Amaratunga
,
W. I.
Milne
,
G.
Pirio
,
P.
Legagneux
,
F.
Wyczisk
,
D.
Pribat
, and
D. G.
Hasko
,
Appl. Phys. Lett.
80
,
2011
(
2002
).
7.
J. S.
Suh
,
K. S.
Jeong
,
J. S.
Lee
, and
I.
Han
,
Appl. Phys. Lett.
80
,
2392
(
2002
).
8.
Y.
Tu
,
Z. P.
Huang
,
D. Z.
Wang
,
J. G.
Wen
, and
Z. F.
Ren
,
Appl. Phys. Lett.
80
,
4018
(
2002
).
9.
Z. F.
Ren
,
Z. P.
Huang
,
J. W.
Xu
,
J. H.
Wang
,
P.
Bush
,
M. P.
Siegal
, and
P. N.
Provencio
,
Science (Washington, DC, U.S.)
282
,
1105
(
1998
).
10.
Z. F.
Ren
,
Z. P.
Huang
,
D. Z.
Wang
,
J. G.
Wen
,
J. W.
Xu
,
J. H.
Wang
,
L. E.
Calvet
,
J.
Chen
,
J. F.
Klemic
, and
M. A.
Reed
,
Appl. Phys. Lett.
75
,
1086
(
1999
).
11.
Z. P.
Huang
,
D. Z.
Wang
,
J. G.
Wen
,
M.
Sennett
,
H.
Gibson
, and
Z. F.
Ren
,
Appl. Phys. A: Mater. Sci. Process.
74
,
387
(
2002
).
12.
C. J.
Edgcombe
and
U.
Valdré
,
J. Microsc.
203
,
188
(
2000
).
13.
K. A.
Dean
and
B. R.
Chalamala
,
Appl. Phys. Lett.
76
,
375
(
2000
).
14.
J.-M.
Bonard
,
M.
Croci
,
I.
Arfaoui
,
O.
Noury
,
D.
Sarangi
, and
A.
Châtelain
,
Diamond Relat. Mater.
11
,
763
(
2002
).
15.
In Ref. 4, Elocal=2.6 V/nm for the current density of 10 nA/cm2. Therefore, Elocal,1 for the average current density of 1 mA/cm2 can be calculated to be 4.1 V/nm from Fowler–Nordheim equation, as follows. (1 mA/cm2/10 nA/cm2)=105=(Elocal,1/Elocal)2exp[−Bφ3/2(1/Elocal,1−1/Elocal)], where B=6.83 VeV−3/2nm−1 and φ is assumed to be equal to the work function of graphite of 5 eV.
This content is only available via PDF.
You do not currently have access to this content.