Ultraviolet photoemission spectroscopy is used to determine the energy level alignment at interfaces between three electroactive conjugated organic molecular materials, i.e., N,N-bis-(1-naphthyl)-N,N-diphenyl1-1,1-biphenyl1-4,4-diamine; para-sexiphenyl; pentacene, and two high work function electrode materials, i.e., gold and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Although both electrode surfaces have a similar work function (∼5 eV), the hole injection barrier and the interfacial dipole barrier are found to be significantly smaller for all the interfaces formed on the polymer as compared to the metal. This important and very general result is linked to one of the basic mechanisms that control molecular level alignment at interfaces with metals, i.e., the reduction of the electronic surface dipole contribution to the metal work function by adsorbed molecules.

1.
J. S.
Kim
,
M.
Granstrom
,
R. H.
Friend
,
N.
Johansson
,
W. R.
Salaneck
,
R.
Daik
,
W. J.
Feast
, and
F.
Cacialli
,
J. Appl. Phys.
84
,
6859
(
1998
).
2.
I. G.
Hill
,
A.
Rajagopal
,
A.
Kahn
, and
Y.
Hu
,
Appl. Phys. Lett.
73
,
662
(
1998
).
3.
H.
Ishii
and
K.
Seki
,
IEEE Trans. Electron Devices
44
,
1295
(
1997
).
4.
H.
Ishii
,
K.
Sugiyama
,
E.
Ito
, and
K.
Seki
,
Adv. Mater.
11
,
605
(
1999
).
5.
X.
Crispin
,
V.
Geskin
,
A.
Crispin
,
J.
Cornil
,
R.
Lazzaroni
,
W. R.
Salaneck
, and
J. L.
Bredas
,
J. Am. Chem. Soc.
124
,
8131
(
2002
).
6.
M. Cardona and L. Ley, in Photoemission in Solids I, Topics in Applied Physics Vol. 26, edited by M. Cardona and L. Ley (Springer, Berlin, 1978), p. 16.
7.
S. A. v.
Slyke
,
C. H.
Chen
, and
C. W.
Tang
,
Appl. Phys. Lett.
15
,
2160
(
1996
).
8.
C. D.
Dimitrakopoulos
and
P. R. L.
Malenfant
,
Adv. Mater.
14
,
99
(
2002
).
9.
W.
Graupner
,
G.
Grem
,
F.
Meghdadi
,
C.
Paar
,
G.
Leising
,
U.
Scherf
,
K.
Müllen
,
W.
Fischer
, and
F.
Stelzer
,
Mol. Cryst. Liq. Cryst.
256
,
549
(
1994
).
10.
D. J.
Gundlach
,
Y. Y.
Lin
,
T. N.
Jackson
, and
D. G.
Schlom
,
Appl. Phys. Lett.
71
,
3853
(
1997
).
11.
R. L.
Johnson
and
J.
Reichardt
,
Nucl. Instrum. Methods Phys. Res.
208
,
719
(
1983
).
12.
I. G.
Hill
,
A.
Rajagopal
, and
A.
Kahn
,
J. Appl. Phys.
84
,
3236
(
1998
).
13.
S.
Buchholz
,
H.
Fuchs
, and
J. P.
Rabe
,
J. Vac. Sci. Technol. B
9
,
857
(
1991
).
14.
E. V.
Tsiper
,
W.
Gao
,
Z. G.
Soos
, and
A.
Kahn
,
Chem. Phys. Lett.
360
,
47
(
2002
).
15.
N. Koch and J. Pflaum (unpublished).
16.
I. G.
Hill
,
A.
Kahn
,
Z. G.
Soos
, and
R. A.
Pascal
,
Chem. Phys. Lett.
327
,
181
(
2000
).
17.
W. Gao and A. Kahn (private communication).
18.
K. Z.
Xing
,
M.
Fahlman
,
X. W.
Chen
,
O.
Inganas
, and
W. R.
Salaneck
,
Synth. Met.
89
,
161
(
1997
).
19.
I. G.
Hill
,
D.
Milliron
,
J.
Schwartz
, and
A.
Kahn
,
Appl. Surf. Sci.
166
,
354
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.