We demonstrate that multiwalled nanotubes can be efficiently converted to BN multiwalled nanotubes via an oxidation treatment. The microstructure and composition of the precursors and final products have been characterized by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, and energy dispersive x-ray spectroscopy. The conversion process is monitored by thermogravimetric analysis. Carbon layers of nanotubes start to oxidize at thereby transforming nanotubes into pure BN nanotubes. The remarkable thermal stability of pure BN nanotubes in an oxidizing environment is also established.
REFERENCES
1.
N. G.
Chopra
, R. J.
Luyken
, K.
Cherrey
, V. H.
Crespi
, M. L
Cohen
, S. G.
Louie
, and A.
Zettl
, Science
269
, 966
(1995
).2.
Z.
Weng-Sieh
, K.
Cherrey
, N. G.
Chopra
, X.
Blasé
, Y.
Miyamoto
, A.
Rubio
, M. L.
Cohen
, S. G.
Louie
, A.
Zettl
, and R.
Gronsky
, Phys. Rev. B
51
, 11229
(1995
).3.
X.
Blase
, J.-Ch.
Charlier
, A. De
Vita
, and R.
Car
, Appl. Phys. A: Mater. Sci. Process.
A68
, 293
(1999
).4.
5.
W.
Han
, Y.
Bando
, K.
Kurashima
, and T.
Sato
, Jpn. J. Appl. Phys., Part 2
38
, L755
(1999
).6.
W.
Han
, L.
Bourgeois
, Y.
Bando
, K.
Kurashima
, and T.
Sato
, Appl. Phys. A: Mater. Sci. Process.
A71
, 83
(2000
).7.
8.
9.
T. W.
Ebbesen
, P. M.
Ajayan
, H.
Hiura
, and K.
Tanigaki
, Nature (London)
367
, 519
(1994
).10.
As a comparation, we also measure the amorphous porous carbon and graphite particles by TGA. The masses of amorphous porous carbon graphite particles start to decrease at about 400 and respectively.
11.
W.
Han
, J.
Cumings
, X.
Hunag
, K.
Bradley
, and A.
Zettl
, Chem. Phys. Lett.
346
, 368
(2001
).12.
There are about 50% nanotubes in the sample. Others are and BN particles, wires and Fullerene-like nano particles. There are not pure carbon materials in the sample. For nanotubes, there are no amorphous carbon coating. The mass loss data by TGA is from all the stuffs of the sample (14%). The mass loss data (9%) by EELS is only from nanotubes. The mass loss data difference comes from two reasons: (1) the measurement error (e.g., due to uncertainties in background subtraction of EELS data, the calculated B/C ratio has an estimated error of 20%); (2) the non-nanotubes materials might have more carbon content than that of nanotubes.
13.
K.
Suenaga
, C.
Colliex
, N.
Demoncy
, A.
Loiseau
, H.
Pascard
, and F.
Willaime
, Science
278
, 653
(1997
).
This content is only available via PDF.
© 2002 American Institute of Physics.
2002
American Institute of Physics
You do not currently have access to this content.