For a long time, hexagonal diamond has been formed only by static and shock wave compression of well-crystallized graphites. Here, we demonstrate that cubic diamond loses its structure stability and transforms to hexagonal diamond in massive. This transformation has been completed in nanoseconds under a shock wave compression of cubic diamond, in which the shock pressure and temperature are only tens of giga pascal and hundreds of kelvin, thermodynamically being within the stability of cubic diamond. The formation of hexagonal diamond is interpreted as a direct transition (solid to solid) of cubic diamond by a kinetic mechanism due to the shear stress and enhanced temperature induced by the rapid shock wave compression.
Topics
Shock waves
This content is only available via PDF.
© 2002 American Institute of Physics.
2002
American Institute of Physics
You do not currently have access to this content.