The evolution of implanted 2H profiles in single-crystal ZnO was examined as a function of annealing temperature (500–700 °C) by secondary ion mass spectrometry. The as-implanted profiles show a peak concentration of ∼2.7×1019cm−3 at a depth of ∼0.96 μm for a dose of 1015cm−2. Subsequent annealing causes outdiffusion of 2H from the ZnO, with the remaining hydrogen decorating the residual implant damage. Only 0.2% of the original dose is retained after annealing at 600 °C. Rutherford backscattering/channeling of samples implanted with 1H at a dose of 1016cm−2 showed no change in backscattering yield near the ZnO surface, but did result in an increase near the end-of-range from 6.5% of the random level before 1H implantation to ∼7.8% after implantation. Results of both cathodoluminescence and photoluminescence studies show that even for a 1H dose of 1015cm−2, the intensity of the near gap emission from ZnO is reduced more than 2 orders of magnitude from the values in unimplanted samples. This is due to the formation of effective nonradiative recombination centers associated with ion-beam-induced defects.

1.
D. C.
Look
,
Mater. Sci. Eng., B
80
,
383
(
2001
).
2.
M.
Wraback
,
H.
Shen
,
S.
Liang
,
C. R.
Gorla
, and
Y.
Lu
,
Appl. Phys. Lett.
74
,
507
(
1999
).
3.
T.
Aoki
,
D. C.
Look
, and
Y.
Hatanaka
,
Appl. Phys. Lett.
76
,
3257
(
2000
).
4.
C. C.
Chang
and
Y. E.
Chen
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
624
(
1997
).
5.
P. M.
Verghese
and
D. R.
Clarke
,
J. Appl. Phys.
87
,
4430
(
2000
).
6.
C. R.
Gorla
,
N. W.
Emanetoglu
,
S.
Liang
,
W. E.
Mayo
,
Y.
Lu
,
M.
Wraback
, and
H.
Shen
,
J. Appl. Phys.
85
,
2595
(
1999
).
7.
H.
Ohta
,
K.
Kawamura
,
M.
Orita
,
M.
Hirano
,
N.
Sarukura
, and
H.
Hosono
,
Appl. Phys. Lett.
77
,
475
(
2000
).
8.
M.
Joseph
,
H.
Tabata
, and
T.
Kawai
,
Jpn. J. Appl. Phys.
38
,
L1205
(
1999
).
9.
S.
Krishnamoorthy
,
A. A.
Iliadis
,
A.
Inumpudi
,
S.
Choopun
,
R. D.
Vispute
, and
T.
Venkatesan
,
Solid-State Electron.
46
,
1631
(
2002
).
10.
P.
Zu
,
Z. K.
Tang
,
G. K. L.
Wong
,
M.
Kawasaki
,
A.
Ohtomo
,
K.
Koinuma
, and
Y.
Sagawa
,
Solid State Commun.
103
,
459
(
1997
).
11.
D. M.
Bagnall
,
Y. R.
Chen
,
Z.
Zhu
,
T.
Yao
,
S.
Koyama
,
M. Y.
Shen
, and
T.
Goto
,
Appl. Phys. Lett.
70
,
2230
(
1997
).
12.
S.
Liang
,
C. R.
Gorla
,
N. W.
Emanetoglu
,
Y.
Liu
,
W. E.
Mayo
, and
Y.
Lu
,
J. Electron. Mater.
27
,
L72
(
1998
).
13.
S.
Liang
,
H.
Sheng
,
Y.
Liu
,
Z.
Huo
,
Y.
Lu
, and
H.
Shen
,
J. Cryst. Growth
225
,
110
(
2001
).
14.
M.
Wraback
,
H.
Shen
,
S.
Liang
,
C. R.
Gorla
, and
Y.
Lu
,
Appl. Phys. Lett.
74
,
507
(
1999
).
15.
J.-M.
Lee
,
K.-K.
Kim
,
S.-J.
Park
, and
W.-K.
Choi
,
Appl. Phys. Lett.
78
,
3842
(
2001
).
16.
J. E.
Nause
,
III-V’s Review
12
,
28
(
1999
).
17.
Y.
Chen
,
D.
Bagnell
, and
T.
Yao
,
Mater. Sci. Eng., B
75
,
190
(
2000
).
18.
D. C.
Look
,
D. C.
Reynolds
,
J. W.
Hemsky
,
R. L.
Jones
, and
J. R.
Sizelove
,
Appl. Phys. Lett.
75
,
811
(
1999
).
19.
D. C.
Look
,
J. W.
Hemsky
, and
J. R.
Sizelove
,
Phys. Rev. Lett.
82
,
2552
(
1999
).
20.
F. D.
Auret
,
S. A.
Goodman
,
M.
Hayes
,
M. J.
Legodi
,
H. A.
van Laarhoven
, and
D. C.
Look
,
Appl. Phys. Lett.
80
,
956
(
2002
).
21.
S. O.
Kucheyev
,
J. E.
Bradby
,
J. S.
Williams
,
C.
Jagadish
, and
M. V.
Swain
,
Appl. Phys. Lett.
80
,
956
(
2002
).
22.
D. C.
Reynolds
,
D. C.
Look
, and
B.
Jogai
,
Solid State Commun.
99
,
873
(
1996
).
23.
D. R.
Clarke
,
J. Am. Chem. Soc.
82
,
485
(
1999
).
24.
C. G.
van de Walle
,
Phys. Rev. Lett.
85
,
1012
(
2000
).
25.
C. G.
van de Walle
,
Phys. Status Solidi B
229
,
221
(
2002
).
26.
C.
Kilic
and
Z.
Zunger
,
Appl. Phys. Lett.
81
,
73
(
2002
).
27.
C. G.
van de Walle
,
Physica B
308–310
,
899
(
2001
).
28.
S. J. F.
Cox
,
E. A.
Davis
,
S. P.
Cottrell
,
P. J. C.
King
,
J. S.
Lord
,
J. M.
Gil
,
H. V.
Alberto
,
R. C.
Vilao
,
DJ. P.
Duarte
,
N. A.
de Campos
,
A.
Weidinger
,
R. L.
Lichti
, and
S. J. C.
Irving
,
Phys. Rev. Lett.
86
,
2601
(
2001
).
29.
S. J. F.
Cox
,
E. A.
Davis
,
P. J. C.
King
,
J. M.
Gil
,
H. V.
Alberto
,
R. C.
Vilao
,
J. P.
Duarte
,
N. A.
de Campos
, and
R. L.
Lichti
,
J. Phys. C
13
,
9001
(
2001
).
30.
D. M.
Hofmann
,
A.
Hofstaetter
,
F.
Leiter
,
H.
Zhou
,
F.
Henecker
,
B. K.
Meyer
,
S. B.
Schmidt
, and
P. G.
Baranov
,
Phys. Rev. Lett.
88
,
045504
(
2002
).
31.
S. J.
Baik
,
J. H.
Jang
,
C. H.
Lee
,
W. Y.
Cho
, and
K. S.
Lim
,
Appl. Phys. Lett.
70
,
3516
(
1997
).
32.
B.
Theys
,
V.
Sallet
,
F.
Jomard
,
A.
Lusson
,
J.-F.
Rommeluere
, and
Z.
Teukam
,
J. Appl. Phys.
91
,
3922
(
2002
).
33.
N.
Ohashi
,
T.
Ishigaki
,
N.
Okada
,
T.
Sekiguchi
,
I.
Sakaguchi
, and
H.
Haneda
,
Appl. Phys. Lett.
80
,
2869
(
2002
).
34.
V.
Bogatu
,
A.
Goldenbaum
,
A.
Many
, and
Y.
Goldstein
,
Phys. Status Solidi B
212
,
89
(
1999
).
35.
T.
Sekiguchi
,
N.
Ohashi
, and
Y.
Terada
,
Jpn. J. Appl. Phys.
36
,
L289
(
1997
).
36.
S.
Tüzemen
,
G.
Xiong
,
J.
Wilkinson
,
B.
Mischuck
,
K. B.
Ucer
, and
R. T.
Williams
,
Physica B
308-310
,
1197
(
2001
).
37.
C. S.
Han
,
J.
Jun
, and
H.
Kim
,
Appl. Surf. Sci.
175/176
,
567
(
2001
).
38.
Y.
Natsume
and
H.
Sakata
,
J. Mater. Sci.: Mater. Electron.
12
,
87
(
2001
).
39.
Y.-S.
Kang
,
H. Y.
Kim
, and
J. Y.
Lee
,
J. Electrochem. Soc.
147
,
4625
(
2000
).
40.
R. G.
Wilson
,
S. J.
Pearton
,
C. R.
Abernathy
, and
J. M.
Zavada
,
J. Vac. Sci. Technol. A
13
,
719
(
1995
).
41.
For a review, see
S. K.
Estreicher
,
Mater. Sci. Eng., R.
14
,
319
(
1995
).
42.
S. O. Kucheyev, P. N. K. Deenapanray, C. Jagadish, J. S. Williams, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata (unpublished).
This content is only available via PDF.
You do not currently have access to this content.