A mixed cation interfacial structure in ZrO2TiO2 nanolaminate films with ultrathin bilayer periodicity grown by sputter deposition at 297 K was identified by x-ray diffraction and nonresonant Raman spectroscopy. This structure consists of an amorphous phase at a ZrO2-on-TiO2 bilayer interface, followed by an extensive crystalline monoclinic (Zr,Ti)O2 solid solution predicted by Vegard’s law. Monoclinic (Zr,Ti)O2 has previously been reported only once, in bulk powder of a single composition (ZrTiO4) at high pressure. Its stabilization in the nanolaminates is explained by the Gibbs–Thomson effect. This complex interfacial structure is shown to be a means of accommodating chemical mixing in the absence of a driving force for heteroepitaxy.

1.
C. M.
Scanlan
,
M.
Gajdardziska-Josifovska
, and
C. R.
Aita
,
Appl. Phys. Lett.
64
,
3548
(
1994
).
2.
P.
Yashar
,
S. A.
Barnett
,
L.
Hultman
, and
W. D.
Sproul
,
J. Mater. Res.
14
,
3614
(
1999
).
3.
J. D.
DeLoach
and
C. R.
Aita
,
J. Mater. Sci. Lett.
19
,
1123
(
2000
).
4.
I.
Moriguchi
,
Y.
Tsujigo
,
Y.
Teraoka
, and
S.
Kagawa
,
J. Phys. Chem. B
104
,
8101
(
2000
).
5.
C. R.
Aita
,
Surf. Eng.
14
,
421
(
1998
).
6.
A. E.
Mc.Hale
and
R. S.
Roth
,
J. Am. Ceram. Soc.
69
,
827
(
1986
).
7.
V. V.
Yakovlev
,
G.
Scarel
,
C.
Aita
, and
S.
Mochizuki
,
Appl. Phys. Lett.
76
,
1107
(
2000
).
8.
ASTM Joint Committee on Powder Diffraction Standards File Nos. 4-0551; 4-0477; 29-1360.
9.
Ibid., File Nos. 34-0415; 46-1265; 46-0209.
10.
Ibid., File Nos. 13-307; 17-923; 27-997.
11.
C. R.
Aita
,
M. D.
Wiggins
,
R.
Whig
,
C. M.
Scanlan
, and
M.
Gajdardziska-Josifovska
,
J. Appl. Phys.
79
,
1176
(
1996
).
12.
W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics 2nd ed. (Wiley-Interscience, New York, 1976), p. 131.
13.
N.
Dubrovinskaia
,
L. S.
Dubrovinsky
,
R.
Ahuja
,
V. B.
Prokopenko
,
V.
Dmitriev
,
H.-P.
Weber
,
J. M.
Osorio-Guillen
, and
B.
Johansson
,
Phys. Rev. Lett.
87
,
275501
(
2001
).
14.
A.
El Goresy
,
M.
Chen
,
L.
Dubrovinsky
,
P.
Gillet
, and
G.
Graup
,
Science
293
,
1467
(
2001
).
15.
R. W.
Lynch
and
B.
Morosin
,
J. Am. Chem. Soc.
55
,
410
(
1972
).
16.
K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists (Macmillan, New York, 1992), p. 105.
17.
R. E. Cohen, M. J. Mehl, and L. L. Boyer, Phys. B 150, 150 (1988).
18.
K. N. Tu, J. W. Mayer, and L. C. Feldman, Op. cit., pp. 36–42.
19.
V. G.
Keramidas
and
W. B.
White
,
J. Am. Ceram. Soc.
57
,
22
(
1974
).
20.
G.-M.
Rignanese
,
F.
Detraux
,
X.
Gonze
, and
A.
Pasquarello
,
Phys. Rev. B
64
,
134301
(
2001
).
21.
H.
Arashi
,
T.
Yagi
,
S.
Akimoto
, and
Y.
Kudoh
,
Phys. Rev. B
41
,
4309
(
1990
).
22.
M. A.
Krebs
, and
R. A.
Condrate
, Sr.
,
J. Mater. Sci. Lett.
7
,
1327
(
1988
).
23.
A. A.
Zhilin
,
V. I.
Petrov
,
M. Ya.
Tsenter
, and
T. I.
Chuvaeva
,
Opt. Spectrosc.
73
,
684
(
1992
).
24.
F.
Azough
,
R.
Freer
, and
J.
Petzelt
,
Opt. Spectrosc.
28
,
2273
(
1993
).
25.
Y. K.
Kim
and
H. M.
Jang
,
J. Appl. Phys.
89
,
6349
(
2001
).
26.
K.
Tanabe
,
T.
Sumiyoshi
,
K.
Shibata
,
T.
Kiyoura
, and
J.
Kitagawa
,
Bull. Chem. Soc. Jpn.
47
,
1064
(
1074
).
27.
R. J.
Davis
and
Z.
Liu
,
Chem. Mater.
9
,
2311
(
1997
).
28.
X.
Gao
,
S. R.
Bare
,
J. L. G.
Fierro
,
M. A.
Banares
, and
I. E.
Wachs
,
J. Phys. Chem. B
102
,
5653
(
1998
).
29.
F.
Farges
,
G. E.
Brown
, Jr.
, and
J. J.
Rehr
,
Phys. Rev. B
56
,
1809
(
1997
).
30.
J.
Xu
,
C.
Lind
,
A. P.
Wilkinson
, and
S.
Pattanaik
,
Chem. Mater.
12
,
3347
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.