We have studied the influence of hydrostatic pressure on the light emission from cubic In0.1Ga0.9N. A qualitative difference between pressure dependence of photoluminescence peak energies for cubic and wurtzite symmetry InGaN/GaN quantum wells (QWs) was found. Cubic samples revealed magnitude of dEE/dP of 26–30 meV/GPa, practically independent of the QW width. Previous studies of the hexagonal InGaN/GaN structures showed that with increasing QW width dEE/dP changed between about 30 meV/GPa and 0 meV/GPa. This different behavior of two types of QWs can be explained by the lack of built-in electric field (along growth direction) in case of cubic structures. To describe pressure evolution of the optical transitions in cubic InGaN/GaN QWs and thick epitaxial layer, we use a simple k×p model based on the linear theory of elasticity. To reproduce the experimental data, it is necessary to invoke presence of In-rich fluctuations in the cubic In0.1Ga0.9N samples.

1.
S. F. Chichibu, Y. Kawakami, and T. Sota, in Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, edited by S. Nakamura and S. F. Chichibu (Taylor & Francis, London, 2000), pp. 153–270.
2.
Y. H.
Cho
,
T. J.
Schmidt
,
S.
Bidnyk
,
G. H.
Gainer
,
J. J.
Song
,
S.
Keller
,
U. K.
Mishra
, and
S. P.
DenBaars
,
Phys. Rev. B
61
,
7571
(
2000
).
3.
P.
Perlin
,
I.
Gorczyca
,
T.
Suski
,
P.
Wisniewski
,
S.
Łepkowski
,
N. E.
Christensen
,
A.
Svane
,
M.
Hansen
,
S. P.
DenBaars
,
B.
Damilano
,
N.
Grandjean
, and
J.
Massie
,
Phys. Rev. B
64
,
115319
(
2001
).
4.
G.
Vaschenko
,
D.
Patel
,
C. S.
Menoni
,
S.
Keller
,
U. K.
Mishra
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
78
,
640
(
2001
);
G.
Vaschenko
,
D.
Patel
,
C. S.
Menoni
,
N. F.
Gardner
,
J.
Sun
,
W.
Goetz
,
C. N.
Tome
, and
B.
Clausen
,
Phys. Status Solidi B
228
,
73
(
2001
).
5.
F.
Bernardini
,
V.
Fiorentini
, and
D.
Vanderbilt
,
Phys. Rev. B
56
,
R10024
(
1997
);
V.
Fiorentini
,
F.
Bernardini
,
F. Della
Salla
,
A.
Di Carlo
, and
P.
Lugli
,
Phys. Rev. B
60
,
8849
(
1999
).
6.
P.
Perlin
,
I.
Gorczyca
,
N. E.
Christensen
,
I.
Grzegory
,
H.
Teisseyre
, and
T.
Suski
,
Phys. Rev. B
45
,
13307
(
1992
).
7.
S.-H.
Wei
and
A.
Zunger
,
Phys. Rev. B
60
,
5404
(
1999
).
8.
S.
Chichibu
,
T.
Azuhata
,
T.
Sota
, and
S.
Nakamura
,
Appl. Phys. Lett.
69
,
4188
(
1996
).
9.
Y.-H.
Kwon
,
G. H.
Gainer
,
S.
Bidnyk
,
Y. H.
Cho
,
J. J.
Song
,
M.
Hansen
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
75
,
2545
(
1999
).
10.
T.
Suski
,
P.
Perlin
,
C.
Skierbiszewski
,
P.
Wisniewski
,
L. H.
Dmowski
,
M.
Leszczynski
, and
W.
Walukiewicz
,
Phys. Status Solidi B
216
,
521
(
1999
).
11.
S. F.
Chichibu
,
M.
Sugiyama
,
T.
Kuroda
,
A.
Tackeuchi
,
T.
Kitamura
,
H.
Nakanishi
,
T.
Sota
,
S. P.
DenBaars
,
S.
Nakamura
,
Y.
Ishida
, and
H.
Okumura
,
Appl. Phys. Lett.
79
,
3600
(
2001
).
12.
E.
Silveira
,
A.
Tabata
,
J.
Leite
,
R.
Trentin
,
V.
Lemos
,
T.
Frey
,
D.
As
,
D.
Schikora
, and
K.
Lischka
,
Appl. Phys. Lett.
75
,
3602
(
1999
).
13.
T.
Kitamura
,
S.
Cho
,
Y.
Ishida
,
T.
Ide
,
X.
Shen
,
H.
Nakanishi
,
S.
Chichibu
, and
H.
Okumura
,
J. Cryst. Growth
227
,
471
(
2001
).
14.
S. F.
Chichibu
,
M.
Sugiyama
,
T.
Onuma
,
T.
Kitamura
,
H.
Nakanishi
,
T.
Kuroda
,
A.
Tackeuchi
,
T.
Sota
,
Y.
Ishida
, and
H.
Okumura
,
Appl. Phys. Lett.
79
,
4319
(
2001
).
15.
S. P.
Łepkowski
,
H.
Teisseyre
,
T.
Suski
,
P.
Perlin
,
N.
Grandjean
, and
J.
Massies
,
Appl. Phys. Lett.
79
,
1483
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.